SM Consider four Ising spins (*i.e.* particles with only one degree of freedom) described by variables s_1 , s_2 , s_3 , s_4 , whose possible values are $s_j = \pm 1$, $j = 1, \ldots, 4$. The four spins are placed on the vertices of a regular tetrahedron and are subject to an interaction with an external magnetic field h, and in addition a ferromagnetic exchange interaction $-Ks_js_k$, $(K \ge 0)$ across each of the six edges < j, k > of the tetrahedron. (See figure.)

The energy of the system is therefore

$$E[s_1, s_2, s_3, s_4] = -h \sum_{i=1}^4 s_i - K \sum_{\langle j,k \rangle} s_j s_k.$$

The system is in contact with a heat bath at temperature T.

- a) Write down the partition function Z_0 for the case that the particles do not interact, *i.e.*, for K = 0.
- b) Now write down the partition function Z for the general case. Collect all identical terms to obtain for Z the most compact expression. What is the value of Z at $T \to \infty$? Explain.
- c) From Z evaluate the thermal average magnetization per spin

$$M = \left\langle \frac{1}{4} \sum_{i=1}^{4} s_i \right\rangle.$$

In the case K = 0 and $k_{\rm B}T = 0.25$ sketch the *h*-dependence of *M*. What is *M* for $T \to \infty$?

d) From Z evaluate the specific heat. For h = 0 and K = 1 sketch the temperature dependence of the specific heat.