A-6

2

In a cold atom experiment, ⁶Li atoms were trapped and the tendency for ferromagnetism was measured. As a simplified description of this experiment consider the following model: Let there be $N = N_{\uparrow} + N_{\downarrow}$ non-interacting spin $\frac{1}{2}$ atoms of mass *m* in a cube with side *L* and volume $V=L^3$. Here N_{\uparrow} denotes the number of spin up $(S_z = +\frac{1}{2})$ atoms and N_{\downarrow} the number of spin down $(S_z = -\frac{1}{2})$ atoms.

- (a) Using <u>periodic boundary conditions</u>, what are the normalized single-particle energy eigenstates and eigenvalues?
- (b) In terms of N_{\uparrow} , N_{\downarrow} , V, and m, what is the Fermi wavevector (k_F) and Fermi energy (E_F) of the up and down atoms and what is the total non-interacting ground state energy, E_0 ? Assume N and L are sufficiently large that one can use integrals instead of sums.

Using a laser-induced interaction, a repulsive contact potential between each pair of atoms is turned on. The total interaction energy is then given by:

$$V_{\rm int} = \sum_{i < j}^{N} g \delta \left(\vec{r}_i - \vec{r}_j \right)$$

with g>0. Here $\vec{r_i}$ is the position of the i^{th} atom.

- (c) In first order perturbation theory with respect to g, what is the interaction energy between two atoms that have the <u>same</u> value of S_z ?
- (d) In first order perturbation theory with respect to g, what is the interaction energy between two atoms that have <u>different</u> values of S_z ?
- (e) In first order perturbation theory with respect to g, and given N_{\uparrow} and N_{\downarrow} , calculate the <u>total</u> interaction energy.
- (f) Using the non-interacting energy from (b) and the interaction energy from (e), what is the minimum value of g for which the polarized state $(N_{\downarrow} = 0, N_{\uparrow} = N)$ is more stable than the unpolarized state $(N_{\downarrow} = N_{\uparrow})$ at zero temperature, (T = 0)? Call this the critical T = 0 coupling, $g_c(T = 0)$.
- (g) Again, considering only the polarized and unpolarized states, determine how the critical coupling $g_c(T)$ depends on temperature in the limit $k_BT \ll E_F$. Use the expression for the low temperature entropy of a free Fermi gas restricted to a single spin state:

$$S = \frac{\pi^2 N k_B T}{2E_E}$$

and expand the total energy found in (f) to first order in $[g - g_c(T = 0)]$.