A gas is composed of an atomic species A. At low temperature the atoms mostly bind in pairs to form diatomic molecules A_2 , but at higher temperatures the molecules can thermally dissociate into individual atoms via the reversible process

$$A_2 \rightleftharpoons A + A$$
.

The binding energy of the diatomic molecule is E_0 . The mass of an isolated A atom is m and that of a diatomic molecule is 2m. We wish to compute the fraction of molecules that are thermally dissociated when N atoms of A are held in thermal equilibrium at temperature T in a container of volume V.

In working this problem you may assume that the temperature is high enough that we can use classical Boltzmann statistics, and that N and V are large enough that we are in the thermodynamic limit. You may also neglect any rotational or vibrational modes of the diatomic molecule.

- a) Write down the expression giving the partition function $Z_{N,\text{atoms}}$ of a gas of N identical atoms of mass m at temperature T in a container of volume V. Evaluate the integral it contains, and so express $Z_{N,\text{atoms}}$ as a product of powers of kT, m, the reduced Planck constant \hbar , V and N!. Here k is Boltzmann's constant.
- b) Write down the partition function Z_N for the partially dissociated gas of N atoms as a sum over terms, each corresponding to there being N_1 single atoms and N_2 diatomic molecules (with $N_1 + 2N_2 = N$).
- c) To deal with the constraint $N_1 + 2N_2 = N$, introduce a chemical potential μ and form the grand-canonical partition function

$$\mathcal{Z}(\mu, V, T) = \sum_{N=0}^{\infty} Z_N e^{\mu N/kT}.$$

Evaluate $\mathcal{Z}(\mu, V, T)$ in closed form.

d) From your result in part (c) compute N_1 and N_2 in terms of μ , and hence show that

$$\frac{(N_1)^2}{N_2} = Ke^{-E_0/kT}.$$

where K is a number, depending on m, kT, V and \hbar that you should evaluate explicitly.