Consider a crystal made up of N *non-interacting* spin-1 atoms, each of which has a magnetic moment μ . The crystal is placed in a uniform magnetic field of magnitude H, so that each atom has three possible energies:

 $E = -\mu H$, when the magnetic moment of the spin is parallel to the field direction;

E = 0, when the magnetic moment of the spin is perpendicular to the field direction;

 $E = \mu H$ when the magnetic moment of the spin is antiparallel to the field direction.

The crystal has a temperature T.

- (a) Without performing detailed calculations, write down values of the internal energy U, the entropy σ , and the net magnetic moment M for this system for each of the following two limiting conditions:
 - (i) the temperature of the crystal $T \rightarrow 0$
 - (ii) the temperature of the crystal $T \to \infty$.

Please provide a physical explanation for your answers.

- (b) Calculate the Helmholtz free energy F for this system.
- (c) Find an expression for the temperature- and field-dependence of the net magnetic moment, M, of the system in the direction of the applied field, H.
- (d) Starting with your result in part (c), write expressions for the asymptotic functional form (up to leading order in the temperature-dependent term) of the average value of the net magnetic moment M/N in the following regimes:
 - (i) at low temperatures, $k_BT \ll \mu H$
 - (ii) at high temperatures, $k_BT \gg \mu H$

Verify that your answers reduce to the results you obtained in part (a) under the appropriate limiting conditions.