Consider a linear chain of N atoms, each with with mass M. The atoms arr arranged on a lattice with spacing d. The total length of the chain is $L=N d$. The atoms are coupled to each other by elastic forces with spring constant K which couple only nearest neighbor atons. The normal modes of this chain, with periodic boundary conditions, arc labelled by a wave vector k in the range $|k| \leq \pi / d$ with spacing $\Delta k=2 \pi / N d$. The normal modes of this chain are acoustic waves. To simplify the analysis we will use the following approxinate frequencies:

$$
\omega_{(}(k)=v_{s}|k|, \quad v_{s}=d \sqrt{\frac{K}{M}}
$$

where v_{s} is the speed of sound in this chain. In Quantum Mechanics this system is described by a set of quanta, acoustic phonons of energy $E(k)=\hbar v_{s}|k|$. The total energy of a state $|\{n(k)\}\rangle$, with $n(k)=0, \ldots, \infty$ acoustic phonons, in the thermodynamic limit is

$$
E[n]=N d \int_{-\pi / d}^{\pi / d} \frac{d k}{2 \pi} \hbar \omega(k)\left(n(k)+\frac{1}{2}\right)
$$

(a) Use the methods of Statistical Mechanics to derive a formula for the internal energy of this linear chain, $U=\langle E\rangle$ at temperature T. Express your results in the form of integrals over the wave vector k. Find an expression for U in term of this integral written in terms of a dimensionless variable, and of the physical parameters of the problem, and of the Debye temperature, defined by $k_{B} \theta_{D}=\pi \hbar v_{s} / d$. (Do not compute the ground state energy!)
(b) Consider the classical limit for this system. Use the classical Equipartition Theorem to compute the heat capacity of a linear chain. For what range of temperatures do you expect this result to apply?
(c) Derive a formula for the heat capacity C of this chain, at constant length.
(d) Use the result derived in (c) to calculate the heat capacity in the high temperature regime. Explain in physical terms the temperature dependence.
(e) Use the result derived in (c) to calculate the temperature dependence of the heat capacity at low temperatures. Using a dimensional argument, justify the power law with which T enters your answer. (Hint: it might be helpful to recall your answer to part a).

Useful integrals:

$$
\begin{aligned}
& \int_{0}^{\infty} d x \frac{x}{e^{x}-1}=-\int_{0}^{\infty} d x \ln \left(1-e^{-x}\right)=\frac{\pi^{2}}{6} \\
& \int_{0}^{\infty} d x x^{2} \frac{e^{x}}{\left(e^{x}-1\right)^{2}}=\frac{\pi^{2}}{3}
\end{aligned}
$$

