In the dilute-gas limit, the free energy of an ideal gas of atoms is $F = Nk_BT(ln(N/n_QV) - 1)$, where N is the number of atoms, V is the volume of the container, T is the temperature of the gas, and k_B is Boltzmann's constant. The quantum density is $n_Q = 3.03/\lambda_t^3$, where λ_t is the de Broglie wavelength of a particle with average thermal energy.

- a) Calculate n_Q for a gas of Ar atoms at T = 300K. Argon has an atomic weight of 40. (See the list of constants below.)
- b) Calculate the entropy of 1 liter of Ar gas at a pressure of 1 atmosphere and a temperature of 300K.
- c) The walls of the container have at total of M surface sites to which atoms can attach with a constant binding energy Δ . Show that the free energy of N_s atoms bound to the surface is $F = -N_s \Delta N_s k_B T (\ln(M/N_s) + 1)$, assuming that $M >> N_s >> 1$.

Schematic picture: (Imagine in 3-d.)

- d) Calculate the binding energy Δ in terms of T, N, V, $n_Q,\,N_s$ and M, assuming that $N>>M>>N_s>>1.$
- e) Evaluate Δ (preferably in eV) assuming V = 1 liter, T = 300K, and that 1% of the surface sites are occupied on average.

Constants: $m_{proton} = 1.673 \times 10^{-27} \text{ kg}$, $k_B = 1.381 \times 10^{-23} \text{ J/K} = 8.6175 \times 10^{-5} \text{ eV/K}$, $h = 6.625 \times 10^{-34} \text{ J-s} = 4.14 \times 10^{-15} \text{ eV-s}$, $1 \text{ atm} = 10^5 \text{ Pa}$.