Consider the one-dimensional Ising model, that is a set of $N\pm 1$ spins which can take values $\sigma_i = \pm 1$. The Hamiltonian is

$$H = -J \sum_{i=1}^{N} \sigma_i \sigma_{i+1} \qquad J > 0$$

In the following you may assume that N>>1 and drop terms of relative order $N^{-1/2}$ or smaller.

- (a) What configurations of the σ_i correspond to the lowest energy level? What is the degeneracy of this level?
- (b) What is the number of different states in which just $M(\le N)$ pairs of nearest-neighbor spins are oppositely oriented? [Hint: The number of ways of assigning N distinguishable objects to two boxes so that M of them are in one box is $N!/(M!(N-M)!) \equiv C_M^N$.]
- (c) Given the result of (b), what is the entropy S(M) associated with a particular value of M?
- (d) We can define the "constrained" Helmholtz free energy F(M) associated with a particular value of M as E(M) TS(M). Find the free energy per spin (i.e. $N^{-1}F(M)$) as a function of $m \equiv M/N$.
- (e) Using Stirling's approximation $\ell n(N!) \approx N(\ell nN 1)$, and treating m as a continuous variable, show that the most probable value of m as a function of T is $\overline{m} = (\exp(J/k_BT) + 1)^{-1}$. You may assume that the mean value of a variable is equal to its most probable value.
- (f) Evaluate the specific heat as a function of T [Hint: It is easier to do this using the energy rather than the free energy.] Why does the specific heat tend to zero for $T\rightarrow\infty$?