SMFall02A

This problem illustrates the basic features of the statistical mechanics of thermal expansion and related phenomena.

Consider a one-dimensional chain of length L, made of N one-dimensional harmonic oscillators. We assume that the energy of the chain is given by

$$E = \frac{\alpha}{2} \left(L - L_o \right)^2 + \sum_{i=1}^{N} \left(N_i + \frac{1}{2} \right) \hbar \omega$$

where the angular frequency, ω , is a function of L, N_i is the occupation number for the *i*th 1-dimensional harmonic oscillator and L_o and α are both constants. Give your answers in terms of ω and $d\omega/dL$.

- a) Assuming the chain is of finite length, determine the equilibrium length of the chain at *T*=0
- b) Find the Helmholtz free energy, *F*, of the chain.
- c) Suppose now that $\omega(L) = \alpha/L$. Calculate the coefficient of thermal expansion.