5M Spring OOB

temperature T.

Consider a potential well with a non-degenerate ground state level of energy zero, and 2 excited levels with the same energy ε . These are the only levels of the well.

- (a) Place 3 identical spin-1/2 Fermi-Dirac particles, all with spin up, in the well at temperature T.
 - Let g_i be the number of ways to distribute i = (0,1,2,3) particles in the excited states. Find g₀, g₁, g₂, and g₃.
 Write out the partition function of the system in terms of the g₁ found above, ε

and kBT, where kB is Boltzmann's constant.

- 3) Determine the probability of finding N_0 (=0,1,2,3) particles in the ground state of the well.
- 4) Determine the mean number of particles $\langle N_0 \rangle$ in the ground state level, and the relative fluctuations $(\langle N_0^2 \rangle \langle N_0 \rangle^2)/\langle N_0 \rangle$ of the occupation of the ground state level.
- (b) Now instead place 3 identical spinless Bose-Einstein particles into the same well at
 - 1) Find g₀, g₁, g₂, and g₃, where as above g_i is the number of ways to distribute i particles in the excited states.
 - 2) Write out the partition function of the system in terms of the g_i , ε and k_BT .
 - 3) Determine the probability of finding N_0 (=0,1,2,3) particles in the ground state of the well.

[continued on next page]

i) the partition function; ii) the mean number of particles $\langle N_0 \rangle$ in the ground state level; and

Calculate explicitly at high temperature to first order in $x = \varepsilon/k_BT$:

iii) the relative fluctuations $(\langle N_0^2 \rangle - \langle N_0 \rangle^2)/\langle N_0 \rangle$ of the occupation of the ground state level. Why, briefly, does $\langle N_0 \rangle$ approach unity at high temperatures?