SMSpring 99A

indistinguishability of the particles.

A system offers noninteracting spinless bosons energy levels $E_n=n\epsilon$ for orbital wavefunctions $\varphi_n(r), n=0,1,2,\ldots$

- (a) Two identical spinless bosons are introduced into the system. Write down explicit \underline{two} -particle wavefunctions $\Psi(\mathbf{r}_1,\mathbf{r}_2)$ and the corresponding energies for the two lowest lying two-particle states. Pay particular attention to symmetry and the
- (b) Now particles are added until the system contains 100 identical bosons. How many independent 100-particle states are there with energy 4 ϵ ? Identify the orbitals ϕ_n contained in these different states, but you are <u>not</u> asked to write the explicit wavefunctions.
- (c) The system is placed in contact with a reservoir at temperature T and a source of bosons that maintains a chemical potential μ . T and μ are adjusted until the system in equilibrium maintain an average of 99 particles in the orbital with E_0 = 0, one particle in the orbital E_1 = ϵ , and a negligible occupancy of higher levels. Use the Bose-Einstein distribution to calculate the values of μ and T in terms of ϵ .