SMSpring97B

Consider a classical gas of N diatomic molecules in thermal equilibrium with a heat bath at temperature T. The molecules move freely inside a cubic box of volume V. Each molecule consists of two atoms of mass m_I and m_2 respectively. The two atoms are permanently bound together inside the molecule by intra-molecular forces with potential

$$U(\vec{r}) = U_o \left(\frac{\bar{r}}{a}\right)^{\alpha}$$

constant with units of energy, a is a characteristic length, and α is a positive constant. The molecules do not interact with each other.

where \vec{r} is the relative separation of the two atoms, U_o is a positive

Let j=1,2,...N label the molecules, and for the j^{th} molecule denote by \bar{R}_j , \bar{P}_j , \bar{r}_j , and \bar{p}_j the coordinates of the center of mass, the momentum of the center of mass, the relative separation of its component atoms and their relative momentum. The classical Hamiltonian is

$$E = \sum_{j=1}^{N} \left[+ \frac{\vec{p}_j^2}{2\mu} + U(\vec{r}_j) \right]$$

where
$$M = \frac{1}{2}(m_1 + m_2)$$
 and $\mu = m_1 m_2/(m_1 + m_2)$.

continued next page

 $Z_N = A \frac{V^N}{N!} \left(\frac{k_B T}{2\pi \hbar^2} \right)^{3N} \left\{ \int_0^\infty 4\pi r^2 e^{-U(r)/k_B T} dr \right\}^N$

Show that the classical partition function Z_N is given by

and express the constant
$$A$$
 in terms of M and μ .

- (b) In the thermodynamic limit N >> 1, N/V fixed, calculate the average
- energy in terms of N, k_BT and α . [Hint: the change of
- variable $t \equiv U(r)/k_BT$ may be useful. You should not need to evaluate
- any integrals for this part.
- (c) Calculate the heat capacity at constant volume $C_{\rm V}$.
- For the case $\alpha = 2$, explain how the answer to (c) could have been (d) obtained without detailed calculation.