SMSpring97A A sample consists of N independent electric dipoles. Each dipole has two possible quantum states with energies $\pm \mu E$, where E is the magnitude of an externally applied electric field. The lower energy state has dipole moment μ and the higher energy state has dipole moment $-\mu$. - (a) Find the total electric dipole moment of the sample in an electric field E and at temperature T. - (b) Show that the entropy of the sample is given by, $$S = Nk_B \left\{ -\frac{\mu E}{k_B T} \tanh \left(\frac{\mu E}{k_B T} \right) + \ln \left[2 \cosh \left(\frac{\mu E}{k_B T} \right) \right] \right\}$$ where k_B is Boltzmann's constant. You may use the fact that $S = -\left(\frac{\partial F}{\partial T}\right)$ where F is the Helmholtz free energy. (c) Without using the formula in b, explain physically what the entropy should be in the limits $E \to 0$ and $E \to \infty$. Entropy versus temperature curves for two values of electric field are shown below. Imagine that the sample is initially at state A, with temperature T_1 and field E_1 . (d) How much heat must be extracted from the sample to move it from state A to state B, maintaining its temperature at T_1 while the field is raised from E_1 to E_2 ? (e) Once the sample is in state B, it is thermally isolated and the field is slowly reduced from E₂ to E₁, bringing the system from state B to state C. What is the temperature of the sample once it reaches state C?