## SMSpring97A

A sample consists of N independent electric dipoles. Each dipole has two possible quantum states with energies  $\pm \mu E$ , where E is the magnitude of an externally applied electric field. The lower energy state has dipole moment  $\mu$  and the higher energy state has dipole moment  $-\mu$ .

- (a) Find the total electric dipole moment of the sample in an electric field E and at temperature T.
- (b) Show that the entropy of the sample is given by,

$$S = Nk_B \left\{ -\frac{\mu E}{k_B T} \tanh \left( \frac{\mu E}{k_B T} \right) + \ln \left[ 2 \cosh \left( \frac{\mu E}{k_B T} \right) \right] \right\}$$

where  $k_B$  is Boltzmann's constant. You may use the fact that  $S = -\left(\frac{\partial F}{\partial T}\right)$  where F is the Helmholtz free energy.

(c) Without using the formula in b, explain physically what the entropy should be in the limits  $E \to 0$  and  $E \to \infty$ .

Entropy versus temperature curves for two values of electric field are shown below. Imagine that the sample is initially at state A, with temperature  $T_1$  and field  $E_1$ .



(d) How much heat must be extracted from the sample to move it from state A to state B, maintaining its temperature at  $T_1$  while the field is raised from  $E_1$  to  $E_2$ ?

(e) Once the sample is in state B, it is thermally isolated and the field is slowly reduced from E<sub>2</sub> to E<sub>1</sub>, bringing the system from state B to state C. What is the temperature of the sample once it reaches state C?