SM7a1196A

Ruby is a crystal of Al_2O_3 doped with chromium Cr^{3+} ions. Due to interactions with Al_2O_3 , the Cr^{3+} ion has a magnetic state of ${}^4F_{3/2}$ in spectroscopic notation ${}^{2S+1}L_J$. The Hamiltonian in zero field is given by:

$$H = D[S_z^2 - (1/3) S(S+1)],$$

where the constant D > 0, and \vec{S} is the total spin operator of the Cr^{3+} . Consider a sample of ruby containing N chromium Cr^{3+} ions.

- (a) Find the energy levels and their degeneracies.
- (b) Calculate the probability of occupancy of the lower energy state at temperature T.
- (c) Calculate and sketch the entropy of the Cr³+ ions as a function of temperature. Find the limiting values at low T and high T.
- (d) Find and sketch the heat capacity from the Cr3+ ions as a function of temperature. Find the functional forms at low T and high T.