SM7a1196A Ruby is a crystal of Al_2O_3 doped with chromium Cr^{3+} ions. Due to interactions with Al_2O_3 , the Cr^{3+} ion has a magnetic state of ${}^4F_{3/2}$ in spectroscopic notation ${}^{2S+1}L_J$. The Hamiltonian in zero field is given by: $$H = D[S_z^2 - (1/3) S(S+1)],$$ where the constant D > 0, and \vec{S} is the total spin operator of the Cr^{3+} . Consider a sample of ruby containing N chromium Cr^{3+} ions. - (a) Find the energy levels and their degeneracies. - (b) Calculate the probability of occupancy of the lower energy state at temperature T. - (c) Calculate and sketch the entropy of the Cr³+ ions as a function of temperature. Find the limiting values at low T and high T. - (d) Find and sketch the heat capacity from the Cr3+ ions as a function of temperature. Find the functional forms at low T and high T.