SM 7a1195B

The internal energy U and entropy S of a perfect classical monotomic gas are, respectively:

$$U = 3Nk_BT/2;$$
 $S = Nk_B[ln n_0/n + 5/2].$

Here k_B is Boltzmann's constant, N is the number of atoms, the average concentration n = N/V and V the volume, and $n_0 = (Mk_BT/2\pi\hbar^2)^{3/2}$, with M the atomic mass.

(a) Show that the chemical potential μ of the gas is related to the pressure p of the gas by μ = -k_BT ln (n₀k_BT/p).

Two such gases, A and X, are in equilibrium with surface sites at which the gases bind to a metal surface. In the presence of A and X simultaneously there are just three possible configurations of each surface site: (i) the surface site is empty (denoted by E below); (ii) the surface site is occupied by one A atom, with energy E_A relative to a stationary A atom in the gas; (iii) the surface site is occupied by one X atom, with energy E_X relative to a stationary X atom in the gas. Excited configurations at the site are not bound, and multiple occupancy is forbidden. You are now asked to consider one site in equilibrium with gases A and X simultaneously at temperature T.

- (b) In terms of parameters defined above, write down the partition functionZ for the configurations of one site.
- (c) Calculate the average concentrations n_E , n_A , n_X for the three configurations of the site in equilibrium with the two gases at temperature T.
- (d) At room temperature and fixed gas pressures p_A and p_X , the sites are occupied in the ratio $n_E:n_A:n_X=1:1:18$. Find the maximum value of n_A that can be obtained by varying p_X alone..