Consider a system of many identical noninteracting spinless fermions occupying a large number M of distinct single-particle states. Of these single-particle states, M/3 have energy $-\varepsilon$, M/3 have energy zero and M/3 have energy ε .

(a) Calculate the partition function and the mean number of particles ⟨N⟩ in the grand canonical ensemble, in terms of the chemical potential μ and the temperature T.
(b) Show that the replacement μ → -μ sends ⟨N⟩ → M - ⟨N⟩.

- (c) For the case that ⟨N⟩ = M/2 find μ at T = 0.
 (d) By using your answer to part (c), verify that μ is in fact independent of T when ⟨N⟩ = M/2. By using your answer to part (b) explain briefly the physical origin of this result.
- this result.

 (e) For the case that $\langle N \rangle = M/2$ find an expression for the heat capacity as a function of T. Sketch a graph of the heat capacity as a function of T, indicating significant features.

[Note: You may use without proof the following identities: $\cosh^2 x - \sinh^2 x = 1$ and $1 + \cosh 2x = 2 \cosh^2 x$.]