
CM Consider a point-mass m_1 located at $(x_1, 0)$ that can slide on a frictionless horizontal rail oriented along the x axis. A pendulum of mass m_2 , located at (x_2, y_2) , is attached to m_1 with a massless rigid wire of length l. The motion of the pendulum is confined to the x - y plane (see figure).

- a) Take the position x_1 of m_1 and the angle θ that the pendulum makes with the vertical as the two generalized coordinates. Write down the Lagrangian L of this system in terms of the generalized coordinates and their time derivatives.
- b) From the Lagrangian L, obtain the two equations of motion for the system.
- c) Write down the momenta p_{x_1} , p_{θ} that are canonically conjugate to your generalized coordinates and use them to obtain the Hamiltonian of the system. Do you expect its value E to be a conserved quantity? Explain why or why not.
- d) Write the expression, in terms of the generalized coordinates and their time derivatives, for the total horizontal momentum $P_x = m_1 \dot{x}_1 + m_2 \dot{x}_2$ of the system. Is P_x a conserved quantity? Why or why not?
- e) Similarly write down the vertical component of the momentum $P_y = m_2 \dot{y}_2$ in terms of the generalized coordinates. Is it a conserved quantity?