CM Consider a particle of mass m moving in a plane under the influence of a velocity-dependent potential. The system has Lagrangian

$$
\mathcal{L}(\mathbf{r}, \mathbf{v})=\frac{1}{2} m|\mathbf{v}|^{2}-V_{0} \frac{1-\alpha \dot{r}^{2}}{r}
$$

where $r=|\mathbf{r}|$ is the distance from the origin, $\mathbf{v}=\frac{d}{d t} \mathbf{r}$ is the velocity, V_{0} and α are positive constants, and the dot denotes a time derivative.
a) Write the Lagrangian in polar coordinates (r, θ). From it find the corresponding canonical momenta p_{r}, p_{θ}, and also the Hamiltonian.
b) Show from the Hamiltonian equations of motion that the angular momentum p_{θ} and energy E are conserved.
c) Reduce the equations of motion to a single first order differential equation. (It is not necessary to solve this equation further.)
d) For a solution with a given positive energy E and angular momentum p_{θ}, what is the distance of closest approach to the origin? Why does your answer not depend on the value of α ?

