
5

The Japanese B-factory collides electron beams and positron beams with adjustable and unequal beam energies to produce an excited state of the Y-meson, called the Y(4S). The rest mass of the Y(4S) is 10.58  $GeV/c^2$ . Subsequently, the Y(4S) meson decays into a pair of B-mesons:  $B^+$  and  $B^-$ . The rest masses of the oppositely charged  $B^+$  and  $B^-$ mesons each are 5.28  $GeV/c^2$ .



<u>Hint:</u> Stay in the units where energy is measured in GeV, momentum in GeV/c and mass in  $GeV/c^2$ .

- (a) The beam energy of the electron beam is chosen as  $E^-=8~GeV$  and the center of mass energy of the colliding beams equals the mass of the Y(4S) meson: calculate the energy of the positron beam,  $E^+$ , in the laboratory frame. Momenta perpendicular to the beam direction are zero.
- (b) Calculate the magnitudes of the momenta for the  $B^+$  and  $B^-$  mesons in the rest frame of the Y(4S).
- (c) Assume the  $B^+$  is emitted in the direction of the electron beam. What are the magnitudes of the 3-momenta for the  $B^+$  and  $B^-$  mesons in the laboratory frame?
- (d) The  $B^+$  and  $B^-$  mesons both decay after  $1.6 \times 10^{-12} s$  in their respective rest frames. How far has each particle traveled in the laboratory frame before they decay?