

Two masses m_1 and m_2 ($m_1 \neq m_2$) are connected by a rigid rod of length *d* and of negligible mass. An extensionless string of length l_1 is attached to m_1 and connected to a fixed point of support P. Similarly, a string of length l_2 ($l_1 \neq l_2$) connects m_2 and P. The assembly is subject to a uniform gravitational field of magnitude *g* directed as shown in the figure, and is able to move only within the plane of the figure.

- (a) Using the Lagrangian or otherwise, obtain the equation of motion for the angle ϕ defined in the accompanying figure. Do not assume ϕ is small.
- (b) Find the frequency of small oscillations around the equilibrium position of the assembly ϕ_0 . You do not need to find ϕ_0 explicitly but you must write down an equation that it satisfies.