5

Consider the reaction, $n+p \rightarrow d+\pi^{0}$, in which a neutron interacts with a target proton to produce a deuteron and a π^{0}. Assume that the target proton is at rest in the lab frame. For this problem use: $m_{n}=m_{p}=M, m_{d}=2 M$, and $m_{\pi}=m$.
(a) The neutron threshold momentum is the minimum neutron momentum needed for the reaction to occur. Derive an expression for the neutron threshold momentum, p_{n}, in terms of M and m.
(b) Derive expressions for the momentum of the π°, and of the d, at threshold. Leave your expression in terms of p_{n}, the neutron threshold momentum that you found in part a).
(c) Assume that the π^{0} created at threshold now decays immediately after its production into two γ rays, $\pi^{0} \rightarrow \gamma+\gamma$ (see diagram below). By considering conservation of momentum, derive an expression for the minimum possible angle θ between the γ-rays in the lab frame, in terms of p_{π} and E_{π}.

