5

Consider the reaction, $n + p \rightarrow d + \pi^0$, in which a neutron interacts with a target proton to produce a deuteron and a π^0 . Assume that the target proton is at rest in the lab frame. For this problem use: $m_n = m_p = M$, $m_d = 2M$, and $m_{\pi} = m$.

- (a) The neutron threshold momentum is the minimum neutron momentum needed for the reaction to occur. Derive an expression for the neutron threshold momentum, p_n , in terms of *M* and *m*.
- (b) Derive expressions for the momentum of the π^{0} , and of the *d*, at threshold. Leave your expression in terms of p_n , the neutron threshold momentum that you found in part a).
- (c) Assume that the π° created at threshold now decays immediately after its production into two γ rays, $\pi^{\circ} \rightarrow \gamma + \gamma$ (see diagram below). By considering conservation of momentum, derive an expression for the minimum possible angle θ between the γ -rays in the lab frame, in terms of p_{π} and E_{π} .

