Two masses M and m are connected by two massless rigid rods of length a that are free to pivot in the (horizontal) frictionless plane of the paper. The point O is fixed. Gravity is not relevant.

(a) In terms of the two dynamical coordinates $\theta(\mathrm{t})$ and $\alpha(\mathrm{t})$ defined in the left hand figure, show that the Lagrangian is
$\boldsymbol{L}=\frac{\boldsymbol{M a} \boldsymbol{a}^{2}}{2} \dot{\boldsymbol{\theta}}^{2}+\frac{\boldsymbol{m \boldsymbol { a } ^ { 2 }}}{2}\left[\dot{\boldsymbol{\theta}}^{2}(2+2 \cos \boldsymbol{\alpha})+\dot{\boldsymbol{\alpha}}^{2}+(2+2 \cos \boldsymbol{\alpha}) \dot{\boldsymbol{\theta}} \dot{\boldsymbol{\alpha}}\right]$
[Hint: You may find it easiest to first construct L in terms of θ and ϕ defined in the right hand figure, and then change coordinates: $\phi=\theta+\alpha$]
(b) Give physical or mathematical reasoning to identify all constants of the motion. Give expressions for them in terms of the dynamical coordinates θ and α and their time derivatives.
(c) Give expressions for the two generalized momenta p_{θ} and p_{α} in terms of the dynamical coordinates θ and α and their time derivatives.
(d) Derive the two coupled ordinary differential equations of the motion for $\theta(\mathrm{t})$ and $\alpha(\mathrm{t})$.
(e) Show that the steady solution $\theta=\Omega \mathrm{t}, \alpha=0$ with constant Ω satisfies these differential equations.
(f) Find the linearized equations that govern small perturbations ε, η, away from the steady solution, where

$$
\theta=\Omega t+\varepsilon(t) ; \quad \alpha=0+\eta(t)
$$

(g) What are the two characteristic frequencies for such perturbations?
(h) Below you see three snapshots of the system perturbed from the steady solution. (The steady solution $\theta(t)=\Omega t, \alpha(t)=0$ is given by the dashed line.) Two of these correspond to the system being in a normal mode; one of them does not. Which of the panels (a), (b) or (c) correspond to normal modes? For those you identify as such, identify the frequency also.

