



A double pendulum consists of one pendulum attached to another. Consider a double bob pendulum with masses  $m_1 = M$  and  $m_2 = m$  attached by rigid massless wires of length  $l_1 = l_2 = l$ . Further, let the angles the two wires make with the vertical be denoted  $\phi_1$  and  $\phi_2$ , as illustrated above. Finally, let the acceleration due to gravity be g. The motion is in the x-y plane and frictionless.

1. Show that the Lagrange function is

$$L = \frac{1}{2} (M+m) l^2 \dot{\phi}_1^2 + \frac{1}{2} m l^2 \dot{\phi}_2^2 + m l^2 \dot{\phi}_1 \dot{\phi}_2 cos (\phi_1 - \phi_2) + (M+m) glcos\phi_1 + mglcos\phi_2$$

- 2. Determine the generalized momenta  $p_1$  and  $p_2$  that are conjugate to  $\phi_1$  and  $\phi_2$ .
- 3. Determine the Euler-Lagrange equations of motion for  $\phi_1$  and  $\phi_2$ .

Next we study small oscillations, i.e.  $|\phi_1| \ll 1$  and  $|\phi_2| \ll 1$ .

- 4. Determine the characteristic frequencies. Sketch  $\phi_1$  and  $\phi_2$  as a function of time on the same graph to show the phase relation.
- 5. What are the limiting values for the frequencies for large M? What is special about this case?