The following situation arises in astronomical observations of luminous jets of plasma ejected from distant galaxies.

A plasma blob P is ejected with speed v from a source S. It is continually emitting light. The blob is seen by an observer O at a large distance D (so that D is much larger than the distance between S and P). The observer is stationary with respect to the source, and the blob is ejected at an angle θ to the line of sight of the observer (see diagram).

- (a) The observer, who knows the distance D, wishes to estimate the speed of the blob by measuring the angle $\phi(t)$. This leads to an estimate for the transverse (y) component of the blob's velocity $\mathbf{v}_{\perp} = D \ d\phi/dt$. Find \mathbf{v}_{\perp} in terms of \mathbf{v} and θ .
- (b) What is the maximum of v_{\perp} with respect to θ if v = 0.995c?
- (c) Does special relativity require $v_{\perp} < c$? Explain your answer briefly.

