A rigid, uniform disc of mass m, radius a, magnetic moment M, is about to roll under gravity from a stationary position on a step, as shown, when it is brought to equilibrium by a vertical magnetic field B. M makes an angle θ with the vertical, and is oriented perpendicular to the radius vector from the disc center to S at the step corner, which exerts a net force F on the disc at S.

- (a). For the particular case when MB = mga, draw a sketch showing the gravitational potential energy U_g and magnetic potential energy U_m as functions of 0 for $0 \le 0 \le \pi/2$.
- (b). Explain why the equilibrium is stable, neutral or unstable, as the case may be.
- (c). For the general case find how the equilibrium value of θ depends on m, M, g, B and a.
- (d). Calculate the smallest coefficient of friction μ at the step required for stability.

