
A simple version of a mechanical speed governor is shown in the figure. It consists of three point masses, two of mass m_1 and one of m_2 , connected by massless rods of length L that are free to pivot at all joints. Two of the rods are attached to a vertical axle at point A as shown in the figure. The angle, θ , between the rods and the axle can vary. As θ varies, mass m_2 slides freely along the axle. The axle rotates with a constant angular speed, Ω , and the masses and rods are constrained to rotate with the same Ω .

- a. What is the minimum rotation speed, Ω_{min} , for which an equilibrium configuration, θ_c , of the masses exists at nonzero θ ?
- b. What is the limiting value of θ_c as $\Omega \to \infty$?
- c. For $\Omega > \Omega_{min}$, what is the frequency of small oscillations about θ_c ? You may express your answer in terms of m_1 , m_2 , L, g, Ω , and/or θ_c .

