

A billiard ball of mass M and a radius R is at rest on a billiard table. It is hit and given a sharp impulse (= $\int F dt$) due to a very large force F acting over a very short time. The impulse is horizontally directed and at a distance h above the surface of the table. The coefficient for kinetic friction between the ball and the table is μ . Note that the moment of inertia for a billiard ball about its center is $2M R^2/5$.

Immediately after the ball is struck, the initial velocity of the center of mass of the ball is v_0 .

For simplicity, consider only h in the range 7R/5 > h > R in parts (a) and (b).

(a) Which of the following best describes the motion of the ball immediately after the impulse?

rolling without sliding, sliding without rotating, or, sliding and rotating

- (b) As a function of h, obtain the final velocity v_f and the time t (after the blow is struck) when this final velocity is achieved (your answer may also include M, R, μ , g and v_0).
- (c) Describe the motion of the ball if h = 7R/5.