CM FALL OIB

A star is orbiting in a galaxy with gravitational potential $\psi(r)$ ($\psi(r)$ is not necessarily $\propto 1/r$); here r is radius in the usual spherical coordinates r, θ , ϕ .

- a) Show that the star's orbit is confined to a plane.
- b) Suppose that the star is on a circular orbit about the origin with radius $r = r_0$. Write down the Lagrangian for the star and use it to find the star's orbital speed v.
- e) Suppose that the star is initially on a circular orbit, but is subsequently given a small impulse in the radial direction. Under what circumstances is the orbit stable?
- d) Will all orbits still be confined to a planes if the potential is perturbed via $\psi(r) \rightarrow \psi(r) \, (1 + \varepsilon \cos(\theta))$?