
CM 7all99B

The three parts of this problem are independent.

- (a) A mass m moves in a circular orbit of radius r_0 under the influence of a central force whose potential is $-km/r^n$ with k>0. Show that the circular orbit is stable under small perturbations if n<2.
- (b) A yo-yo rests on a level surface. A gentle horizontal pull (see figure) is exerted on the string so that the yo-yo rolls without slipping.(i) Which way does it roll?

disk, which is R, and the moment of inertia of the yo-yo about its center is $I = \frac{1}{2}MR^2$ where M is the mass of the yo-yo. What is the torque about the center of the yo-yo? Express your answer in terms of F, M, R, the acceleration due to gravity g and the coefficient of friction μ . (iii) Use the no-slip condition to obtain the (linear) acceleration in terms of F.

(ii) The inner shaft of the yo-yo has one third the radius of the outer

that the yo-yo will roll without slipping?
(c) Consider a relativistic 1D harmonic oscillator: a particle of rest mass m moving in a potential ½mω²x². Use conservation of energy to solve for the velocity v(x). Argue that the first order relativistic correction

(iv) What is the minimum value of the coefficient of friction, μ_{\min} , such

$$\tau = \frac{2\pi}{\omega} \left[1 + (\text{const.}) \frac{\omega^2 a^2}{c^2} + \cdots \right]$$

to the period of the oscillator is

where a is the amplitude of the oscillator and c is the speed of light. Is the constant positive or negative, i.e. does the period get longer or shorter once relativistic effects are included?