CM 701199A

(a)

A thin uniform loop of radius R and mass M is allowed to oscillate in its own plane with one point (P) of the hoop fixed. Attached to the hoop is a point mass M (equal to the mass of the loop) constrained to move without friction along the hoop as shown in the figure. The system is in a uniform gravitational field g.

Consider only small oscillations such that θ_1 and $\theta_2 \ll 1$.

Take the potential to be zero at point P.

Write down the kinetic and potential energies of the system in terms of θ_1 and θ_2 .

(b) Determine the normal-mode frequencies ω_1 and ω_2 and show that $\omega_1 = 2\omega_2 = \sqrt{2g/R}$. (c) The sketches below represent the two modes of oscillations. Which diagram

