(a)

This question concerns a simple model for the formation of rings around a planet. The system we consider is a central planet of mass M around which a cloud of small particles of identical mass m << M revolve. There is no particular symmetry in the cloud initially; however, the total angular momentum of the cloud around the planet is non-zero. Assume that the

$$\mathbf{v}_{i}' - \mathbf{v}_{j}' = -e_{r} (\mathbf{v}_{i} - \mathbf{v}_{j}),$$

particles diminishes.

following simplified collision rule:

where e_r (the coefficient of restitution) obeys $0 < e_r < 1$, $\mathbf{v_i}$ is the velocity of the i-th particle, and primes denote the velocities after collision. The collisions are instantaneous and do not change the masses of the colliding particles.

Consider two colliding particles with velocities before collision \mathbf{v}_1

and v_2 . Write down the loss of kinetic energy ΔK in terms of

particles do not interact with each other except for collisions that obey the

- m, e_r and the velocities before the collision.

 (b) Suppose that the particles in (a) have angular momentum L_1 and L_2 around the central planet. Demonstrate that upon collision, $|L_1 L_2|$
- diminishes.

 (c) The Laplace-Runge-Lenz vector of a particle is defined by

$$\epsilon = \frac{\mathbf{v} \times \mathbf{L}}{Gm(M+m)} - \frac{\mathbf{r}}{\mathbf{r}} \;,$$
 where \mathbf{L} is the particle angular momentum, \mathbf{v} the particle velocity, \mathbf{r} the particle position whose origin is at the central planet and G the gravitational constant. Demonstrate that upon collision the magnitude of the difference between the Laplace-Runge-Lenz vectors of the colliding

(d) Given that L and E uniquely determine the Kepler orbit of the particle, and that the Laplace-Runge-Lenz vector is invariant when there are no collisions, use your results from (b) and (c) to argue that eventually stable rings are formed around the planet.