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Physical Constants

[ Name | Symbol Value Unit |
Numbersr T 3.14159265358979323846
Number e e 2.718281828459

Euler’s constant

v = lim (z 1/k— 1n(n)> = 0.5772156649

Elementary charge e 1.60217733-10~1° C
Gravitational constant G, 6.67259 - 1011 m3kg~1s2
Fine-structure constant a = e?/2hegg ~1/137

Speed of light in vacuum c 2.99792458 - 108 m/s (def)
Permittivity of the vacuum €0 8.854187- 1012 F/m
Permeability of the vacuum | pg 47 -1077 H/m
(deg) 1 8.9876 - 10° Nm2C—2
Planck’s constant h 6.6260755 - 10734 Js
Dirac’s constant h=h/2r 1.0545727 - 1034 Js

Bohr magneton up = eh/2me 9.2741-10~% Am?
Bohr radius ao 0.52918 A
Rydberg’s constant Ry 13.595 eVv
Electron Compton wavelength Ace = h/mec 2.2463 - 1012 m
Proton Compton wavelength| Ac, = h/mpc 1.3214.1018 m
Reduced mass of the H-atom py 9.1045755 - 10731 kg
Stefan-Boltzmann’s constant| ¢ 5.67032- 1078 Wm?K 4
Wien’s constant kw 2.8978-1073 mK
Molar gasconstant R 8.31441 J/mol
Avogadro’s constant Na 6.0221367 - 10%3 mol—!
Boltzmann’s constant k= R/Na 1.380658 - 1023 JIK
Electron mass Me 9.1093897 - 1031 kg
Proton mass mp 1.6726231- 1027 kg
Neutron mass Mn 1.674954 - 1027 kg
Elementary mass unit my = 55m(*¢C)  1.6605656 - 1027 kg
Nuclear magneton LN 5.0508 - 1027 JIT
Diameter of the Sun De 1392 - 10° m

Mass of the Sun Mg 1.989 - 1030 kg
Rotational period of the Sun | T 25.38 days
Radius of Earth Ra 6.378 - 106 m

Mass of Earth My 5.976 - 10%* kg
Rotational period of Earth Ta 23.96 hours
Earth orbital period Tropical year 365.24219879 days
Astronomical unit AU 1.4959787066 - 10'! m

Light year lj 9.4605 - 10*° m
Parsec pc 3.0857 - 1016 m
Hubble constant H ~ (75 £ 25) km-s~1.Mpc~!




Chapter 1

Mechanics

1.1 Point-kinetics in a fixed coordinate system

1.1.1 Definitions

The position?, the velocityy and the accelerationare defined byr = (z,y, 2), ¥ = (2,9, 2), d = (&, §, 2).
The following holds:

s(t) :s()+/|17(t)|dt; F(t):ﬁ)+/17(t)dt; u(t) :170+/d'(t)dt

When the acceleration is constant this give) = vy + at ands(t) = so + vot + gat?,
For the unit vectors in a directian to the orbite; and parallel to i€}, holds:

v dr - v, N gt

€y =15 = €& = —€n; €= =
|€%]

For thecurvaturek and theradius of curvaturep holds:

1

e, d* |dy B

p_da &
ds ds? ds

1.1.2 Polar coordinates

Polar coordinates are defined by: = rcos(), y = rsin(d). So, for the unit coordinate vectors holds:
&, = 0ép, &g = —08¢,

The velocity and the acceleration are derived frote: ré,, 7 = i€, +réy, @ = (¥ — r02)é, + (270 +r6)éy.

1.2 Relative motion

LUXUQ

For the motion of a point D w.r.t. a point Q holdg; = 7 + with QT) =7p — g andw = 0.

w2

Further holds:a = 6. / means that the quantity is defined in a moving system of coordinates. In a moving
system holds:

T=tqg+0' +dx7andd=dq+ad +ax 7 +20 x0T —d x (Jx7)

with |& x (& x 77)| = w?7!,

1.3 Point-dynamics in a fixed coordinate system

1.3.1 Force, (angular)momentum and energy

Newton'’s 2nd law connects the force on an object and the resulting acceleration of the object whave the
mentumis given byp’ = m:

. dp d(mv) dv  _dm m=const
e = =""ma
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Newton’s 3rd law is given byFaction = — Freaction-

For the powelP holds: P = W = F 7. For the total energl//, the kinetic energy” and the potential energy
UholdsW =T+U; T=-UwithT = —va

Thekick S is given by:§ =Ap= /ﬁdt
2 2
The workA, delivered by a force, isl = /13 5= /Fcos(a)ds
1 1

The torquer’is related to the angular momentum 7 = L = 7 x F; and
L=Fxp=mixTr, |L| mr2w. The following equation is valid:

U
a0

Hence, the conditions for a mechanical equilibrium &ref; = 0 and>_ 7 = 0.

T=—

Theforce of frictionis usually proportional to the force perpendicular to the surface, except when the motion
starts, when a threshold has to be overcohig: = f - Fhorm * €;-

1.3.2 Conservative force fields

A conservatlve force can be written as the gradient of a potenﬂa,L1b — —VU. From this follows that
V x F = 0. For such a force field also holds:

Ty
fﬁ-dgzo = U:UO—/ﬁ-ds-'
T0

So the work delivered by a conservative force field depends not on the trajectory covered but only on the
starting and ending points of the motion.

1.3.3 Gravitation
The Newtonian law of gravitation is (in GRT one also usdsstead ofG):

~ mimsa
F,=-G €r
r2

The gravitational potential is then given by= —Gm/r. From Gauss law it then follows72V = 47 Go.

1.3.4 Orbital equations

If V=V (r) one can derive from the equations of Lagrange/ftine conservation of angular momentum:

oL _ov _ d 2.0 .
9%~ 99 Oédt(mrqﬁ)—OéLz—mr(j)—COI’]Stant

For the radial position as a function of time can be found that:

<@)2 _2w-v) I

dt m © m2r2
The angular equation is then:

1
mr? \/Q(W -V) L2 r—2field 1_1
— d = 14+ T T
L m m2r? " arccos { 1+ T + km/L2

To

T

¢*¢0:/

0

If F = F(r): L =constant, ifF" is conservativel¥’ =constant, iff' 1. #thenAT = 0 andU = 0.
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Kepler’s orbital equations

In a force fieldF = kr—2, the orbits are conic sections with the origin of the force in one of the foci (Kepler's
1st law). The equation of the orbit is:

l
0) = —————————, or 2? +y* = ({ —ex)?
r®) 1+4ecos(d —6p)’ Ty = (-ex)
with ) ) . ,
L 2W L k
/e S S Tt e S
G, © T 't e, a “T1-a2 " aw

a is half the length of the long axis of the elliptical orbit in case the orbit is closed. Half the length of the short
axis isb = \/al. ¢ is theexcentricityof the orbit. Orbits with an equalare of equal shape. Now, 5 types of
orbits are possible:

1. k < 0ande = 0: acircle.

2. k< 0and0 < ¢ < 1: an ellipse.

3. k < 0ande = 1: a parabole.

4. k < 0ande > 1: a hyperbole, curved towards the centre of force.

5. k > 0 ande > 1: a hyperbole, curved away from the centre of force.
Other combinations are not possible: the total energy in a repulsive force field is always positivelso

If the surface between the orbit covered betwegeandt, and the focus C around which the planet moves is
A(ty,t2), Kepler's 2nd law is

L¢
A(ty,te) = —(ta — t
( 1, 2) 2m( 2 1)
Kepler's 3rd law is, witHI" the period and/;. the total mass of the system:
T_2 - 472
0/3 o GMtOt
1.3.5 The virial theorem

The virial theorem for one particle is:
. _— du :
(m7-7)=0= (T>:—%<F-7“> :%<TE> = yn(U) if U =——
The virial theorem for a collection of particles is:

<T>%< > E~ﬁ+2ﬁj-ﬁj>

particles pairs

These propositions can also be written 2Bji, + Epor = 0.

1.4 Point dynamics in a moving coordinate system

1.4.1 Apparent forces

The total force in a moving coordinate system can be found by subtracting the apparent forces from the forces
working in the reference framé?’ = F' — F,,,. The different apparent forces are given by:

1. Transformation of the originf,, = —md,
2. Rotation:F,, = —ma x 7’

3. Coriolis force:Foo; = —2md X U

N

. Centrifugal forceFoy = mw?, ' = —Frp ; Fop = ———é,
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1.4.2 Tensor notation

Transformation of the Newtonian equations of motiomto= z“(z) gives:

dz®  O0z® diﬁ.
dt 078 dt’
The chain rule gives:

d dz® d?z™ _d (ax"‘ dxﬁ) ox® d2z°  dzP d (aw)

dt dt  diZ  dt \ozP dt ) 0zP di? +FE ozh
SO:
40z 9 patdn  9an di
dt 0z8  0zY 0B dt  OTPOTY dt
This leads to:

Pat _0xt P30 Pz dw (di
2 0xP dt2  9xPoxy dt \ dt
Hence the Newtonian equation of motion
md%a
dt?

m{de"‘ ra dz? daﬂ} _ po

(03

will be transformed into:

e TUOa Tar

- L da? dx
The apparent forces are taken from he origin to the effect side in thefg@yc%%.

1.5 Dynamics of masspoint collections

1.5.1 The centre of mass

The velocity w.r.t. the centre of magbis given byv — R. The coordinates of the centre of mass are given by:

o= Zmzﬁ
m Zmi

In a 2-particle system, the coordinates of the centre of mass are given by:

S mT1 + mafh
R = -
mi + mao

With 7 = 7 —
1 1 1

_ — 4 —
L T .

The motion within and outside the centre of mass can be separated:

75, the kinetic energy becomes: = %MtotRQ + %mﬁ, with thereduced masg given by:

=

Loutside = Toutside 5 Linside = Tinside

D= My ; Fext =mam; Fio=pi

1.5.2 Collisions

With collisions, where B are the coordinates of the collision and C an arbitrary other position ,peids;ﬁm
is constant, and’ = %mﬁﬁl is constant. The changes in ttedative velocitiexan be derived fromS = Ap =

(1(Tagt — Tpefore). FUrther holdsALe = CB x S, 7 || S =constant and. w.r.t. B is constant.
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1.6 Dynamics of rigid bodies

1.6.1 Moment of Inertia

The angular momentum in a moving coordinate system is given by:
L'=I15+1L,
wherel is themoment of inertiavith respect to a central axis, which is given by:

— 2, ’ 1 =
I = E m;r; Ty T = Wrot = §wlije,-ej =
i

or, in the continuous case:

Further holds: -
Li = I”wj N I“ = 1; ] Iij = Iji = 7kal‘/1/»

(el
k

Steiner’s theorem isly, ;. p = Ly.r.t.c + m(DM)? if axis C|| axis D.

| Object | I | Object | I |
Cavern cylinder I =mR? Massive cylinder I=1imR?
Disc, axis in plane disc throughm I = 1mR? Halter I=1ipR?
Cavern sphere I=2mR? Massive sphere I =2mR?
Bar, axis_L through c.o0.m. I =Lmi? Bar, axisL throughend | I = imi?
Rectangle, axis. plane thr. c.o.m/| I = 4 (a® +b%) || Rectangle, axi§ b thr. m | I = ma?

1.6.2 Principal axes
Each rigid body has (at least) 3 principal axes which stard each other. For a principal axis holds:

ol ol ol
= — =0s0oL =0
Owy  Ow,  Ow. n

. . I — 1.
The following holdswy, = —a;j,ww; With a;;, = 7 Lift I, < I < Is.
k

1.6.3 Time dependence

For torque of force” holds:

ThetorqueT is defined by T = F x d.

1.7 Variational Calculus, Hamilton and Lagrange mechanics

1.7.1 Variational Calculus
Starting with:

b
) . du d
5/£(q,q,t)dt =0 with §(a) =d(b) =0 and ¢ <%) = %(5@
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the equations of Lagrange can be derived:

doL oc
dt 8¢;  9q;
When there are additional conditions applying to the variational probleifu) = 0 of the type

K (u) =constant, the new problem becomé&g(u) — AdK (u) = 0.

1.7.2 Hamilton mechanics

TheLagrangianis given by: £ = >~ T(¢;) — V(¢:). TheHamiltonianis given by: H =} ¢ip; — L. In 2
dimensions holdsC = T — U = im(i? 4+ r2¢?) — U(r, ¢).
If the used coordinates acanonicalthe Hamilton equations are the equations of motion for the system:

dgi OH dp;  OH
dt N 6p1- ’ dt B 6qi

Coordinates are canonical if the following holds;, ¢;} = 0, {p:,p;} =0, {¢:,p;} = d;; where{, } is the

Poisson bracket
0A0OB 0AOB
A B} = — —
{ ’ } Z {a(h Op; Op; 0g;

The Hamiltonian of a Harmonic oscillator is given Bi(z, p) = p?/2m + $mw?z?. With new coordinates
(0, I), obtained by the canonical transformatios= /21 /mw cos(#) andp = —v2Imwsin(d), with inverse
6 = arctan(—p/mwz) andI = p?/2mw + tmwz? it follows: H(0,1) = wl.

The Hamiltonian of a charged particle with charg@ an external electromagnetic field is given by:

H = im (ﬁ—q[f)Q—i—qV

This Hamiltonian can be derived from the Hamiltonian of a free parfitlte p?/2m with the transformations

p— p— q/f andH — H — ¢V. This is elegant from a relativistic point of view: this is equivalent to the
transformation of the momentum 4-vecist — p* — ¢A%. A gauge transformation on the potential$
corresponds with a canonical transformation, which make the Hamilton equations the equations of motion for
the system.

1.7.3 Motion around an equilibrium, linearization

For natural systems around equilibrium the following equations are valid:

oV . o%v
<6qi>0 0: V() = V(0)+ Viegigs with Vi (aqiaqk)o

With T = %(Mikqiq'k) one receives the set of equatiangj + V¢ = 0. If ¢;(t) = a; exp(iwt) is substituted,
this set of equations has solutionslift(V — w2M) = 0. This leads to the eigenfrequencies of the problem:
5 apVay
wk = T
a; May
eigenvibrations.

. If the equilibrium is stable holdszk thatw? > 0. The general solution is a superposition if

1.7.4 Phase space, Liouville’s equation

In phase space holds:

0 0 . 0 O0H 0 O0H
V= (;@’;@) Sovivzz(aqﬁpi _apia%')

i
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If the equation of continuityy;p + V - (¢¥) = 0 holds, this can be written as:

do
H — =0
{o, H} + 5
For an arbitrary quantityl holds:
dA 0A
A H =
dt (A H}+ ot
Liouville’s theorem can than be written as:
d
d—f =0; or /pdq = constant

1.7.5 Generating functions

Starting with the coordinate transformation:

{ Qi = Qi(qi, pist)
Pi = Pt(qupwt)

one can derive the following Hamilton equations with the new Hamiltohian

dQ; 9K —dP, 0K
dt 9P, dt = 0@

Now, a distinction between 4 cases can be made:

_ dFi(gi, Qi)

1. Ifp;gs — H=PQ; — K(P;,Q,1) , the coordinates follow from:

dt
8F1 8F1 dFl

LI LI
Pi= 5 90, T

dFy(qi, P;,t)
dt
. oF, ) 0F, ) 0F,

R N
Pi= %0 9= ap o

2. Ifp;¢g; — H = —PiQi — K(P;,Q;,t) + , the coordinates follow from:

dF3(pi, Qi,t)
dt

L L i
%= 20 T

3. If —pjqs — H = PZ-QZ- — K(P;,Q;,t) + , the coordinates follow from:

dFy(ps, Pi,t)
dt

LOF o OFy o OF

4. If —piq; — H = —-P,Q; — K(P;,Q;,t) + , the coordinates follow from:

= Opi

The functionsF}, Fs, F3 andF, are calledyenerating functions
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Electricity & Magnetism

2.1 The Maxwell equations

The classical electromagnetic field can be described bivdsevell equationsThose can be written both as
differential and integral equations:

#( D . ﬁ)dQA = eree,included \Y ﬁ = Pfree
5[}@ B. )d2A 0 V-B=0
q . 0B
VxE=-22
f{ 8 o
., dv — - oD
% free included + — dt VxH= free 1 W

For the fluxes holds¥ = // i)d*A, & = //(é-ﬁ)dQA

The electric displacemelﬂ, polarizatiomB and electric field strengtﬁ depend on each other according to:

36()kT

D= 80E+ﬁ = EQETE, P= > po/Vol, er = 1+ xe, With xe =

The magnetic field strengtﬁ, the magnetizatioM and the magnetic flux densi@ depend on each other
according to:

B = puo(H + M) = popr H, M = 3210/ Vol, iz = 1+ Xum, With Xy = u;ZTTno

2.2 Force and potential

The force and the electric field between 2 point charges are given by:

= 1Q2 . F
Fo="22 g, E="
12 dmege,r? € Q
The Lorentzforce is the force which is felt by a charged particle that moves through a magnetic field. The
origin of this force is a relativistic transformation of the Coulomb forEg:= Q(v x B) =I(I x B).

The magnetic field in poin” which results from an electric current is given by taer of Biot-Savartalso
known als the law of Laplace. In herd, | I and# points fromdi to P:

=5 ol -
dBp = £ dl'x ¢,

If the current is time-dependent one has to tedtardationinto account: the substitutiof(t) — I(t — r/c)
has to be applied.

The potentials are given by, = —/E -dsandA = 1B x 7.

©
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Here, the freedom remains to applgauge transformationThe fields can be derived from the potentials as

follows: ~
E:fvvf@, B=VxA
ot

Further holds the relation?5 = 7 x E.

2.3 Gauge transformations

The potentials of the electromagnetic fields transform as follows when a gauge transformation is applied:

A =A-vVf
V’—V+af

ot

so the fieldsE and B do not change. This results in a canonical transformation of the Hamiltonian. Further,
the freedom remains to apply a limiting condition. Two common choices are:
10V . . . . - p

1. Lorentz-gaugey - A+ = 2 = 0. This separates the differential equationsdcaindV: OV = —
0

DA = —/Joj.
2. Coulomb gauge¥ - A = 0. If p = 0 and.J = 0 holdsV = 0 and followsA from OA = 0.

2.4 Energy of the electromagnetic field

The energy density of the electromagnetic field is:

aw
dvolfwf/HdBJr/EdD

The energy density can be expressed in the potentials and currents as follows:

wmag:%/jffddm , U}el:%/deBQj

2.5 Electromagnetic waves

2.5.1 Electromagnetic waves in vacuum

The wave equatiom¥ (7, t) = — f (7, t) has the general solution, with= (o)~ /2

9= [LEETO b,

4|7 — 7|

If this is written as:J (7, t) = J(7) exp(—iwt) and A(7, t) = A(7) exp(—iwt) with:
exp (k|7 —=7"]) 5., S, 1 / _exp(ik|r —7'|) 5,
—d v ———d
/ |7 — 77| V) = dme o) |7 — 7| "

A derivation via multlpole expansion will show that for the radiated energy holds\fs> r:

dP k2 b

il J —/ zk-rdd /

dS) 327’(2800 / + (T )e "
The energy density of the electromagnetic wave of a vibrating dipole at a large distance is:
pEsin?(0)w* p2 sin?(0)w? p_ ck*|p|?
167m2egr2ct 32m2egr2ct T 12weg
The radiated energy can be derived from Bognting vectoS: S = E x H = cWé,. Theirradianceis the

time-averaged of the Poynting vectdr= (|5 |);. The radiation pressure is given byp, = (1 + R)|S |/,
whereR is the coefficient of reflection.

w=eoE?* = sin®(kr —wt), (w), =
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2.5.2 Electromagnetic waves in matter

The wave equations in matter, with,.; = (su)*l/2 the lightspeed in matter, are:

% uo\ = % uo\ =
2 — _ = — = 2— _ = — =
(V o p at) E=0, (V hom ; 6‘15) B=0

give, after substitution of monochromatic plane wavBs= E exp(i(k-7—wt)) andB = B exp(i(k-7—wt))
the dispersion relation:
W

k? = epw?® + Y
P
The first term arises from the displacement current, the second from the conductance cutrientiriten in
the formk := k' + ik” it follows that:

1 1
kK = 1 1 1+ —— and k' = 1 -1 1+ —
SV ST e CVRE T Gy

This results in a damped wave: = E exp(—k"7i-7) exp(i(k'ii-7—wt)). If the material is a good conductor,

the wave vanishes after approximately one wavelerigth,(1 + i), / /;—w
p

2.6 Multipoles

Becaus%?%m = % i:: (;)l P,(cos 6) the potential can be written ag: = % ; %
For the lowest-order terms this results in:

e Monopole:l =0, kg = [ pdV

e Dipole:l =1, k; = [ rcos(8)pdV

e Quadrupolel = 2, ky = 1 3°(322 — r?)

7
i

1. The electric dipole: dipole moment:= Qlé, wheree’ goes fromd to &, andF = (p- V)Eext, and

W = 717 Eout-
Lo - Q 3p- T
Electric field: F ~ —— | —— —

Amers r2

—

ﬁ). The torque is7 = 7 X Eqyt

—

2. The magnetic dipole: dipole momentrits /A: ji = I x (AeL), F = (ji - V)Bout

2
muv . -
il = ok W = i x Boug
- = — 3u -7 . -
Magnetic field:B = M3 < NQ " ﬁ>. The moment isT = [i X Boyt
4rr T

2.7 Electric currents

The continuity equation for charge i% + V - J = 0. Theelectric currentis given by:

1:%://@@)&4

For most conductors holds’ = E//p, wherep is theresistivity
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: " dd
If the flux enclosed by a conductor changes this results iimdnced voltagd/,,g = —N—. If the current
flowing through a conductor changes, this results in a self-inductance which opposes the original change:

dI
Vielfind = _LE' If a conductor encloses a fléxholds: ® = LI.

uNT
VET iR

andN the number of coils. The energy contained within a coil is givemiby= 1 L1? andL = uN2A/1.

The magnetic induction within a coil is approximated /= wherel is the length R the radius

Thecapacityis defined by:C = Q/V. For a capacitor holds®' = ¢¢e, A/d whered is the distance between
the plates andi the surface of one plate. The electric field strength between the pldiesis/co = Q /oA
whereo is the surface charge. The accumulated energy is giveWby: %CVQ. The current through a

capacity is given by = —C%.

For most PTC resistors holds approximately: = Ry(1 + oT'), whereRy = pl/A. For a NTC holds:
R(T) = Cexp(—B/T) whereB andC depend only on the material.

If a current flows through two different, connecting conductoendy, the contact area will heat up or cool
down, depending on the direction of the current: Redtier effect The generated or removed heat is given by:
W = Il,,It. This effect can be amplified with semiconductors.

Thethermic voltagebetween 2 metals is given by = (7' — Tp). For a Cu-Konstantane connection holds:
v~ 0.2 —0.7mV/K.

In an electrical net with only stationary curreniStchhoff’s equations apply: for a knot hold$: I,, = 0,
along a closed path hold§. V,, = > I,,R,, = 0.

2.8 Depolarizing field

If a dielectric material is placed in an electric or magnetic field, the field strength within and outside the
material will change because the material will be polarized or magnetized. If the medium has an ellipsoidal
shape and one of the principal axes is parallel with the external figldr B, then the depolarizing is field
homogeneous.

NP

Edep = Emat - E() = - -
0

—

Hdep = ﬁmat - ﬁO = _NM

N is a constant depending only on the shape of the object placed in the field) with/ < 1. For a few
limiting cases of an ellipsoid holds: a thin plane:= 1, a long, thin barA” = 0, a sphereN = 1.

2.9 Mixtures of materials

The average electric displacement in a material which is inhomogenious on a mesoscopic scale is given by:

-1
(D) = (eE) = &* (E) wheree* = ¢; (1 - %) wherex = £1/e5. For a sphere holdsd =
2

1 + 22, Further holds:
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Relativity

3.1 Special relativity

3.1.1 The Lorentz transformation

The Lorentz transformatiofx’, t') = (Z'(Z,t),t'(#,t)) leaves the wave equation invariantiis invariant:

0? 02 02 192 02 02 0? 1 02

02 o To2 T @or o Toy2 T 92 T 2o

This transformation can also be found whést = ds’? is demanded. The general form of the Lorentz
transformation is given by:

-1 U)U t—2-U
O G et V[0 Y [ Gk A1)
|U|2 02
where
1
Y
v

The velocity difference’’ between two observers transforms according to:

- - —1 - -
. .U
g = (7(1—1]1 2U2)) (UQ-‘,—(W—l)UlQQﬁl—f}A—ﬁ)
c v7

If the velocity is parallel to the-axis, this becomeg = y, 2’ = 2 and:

¥ =vx—vt), =~ +0vt")
t'=n

!
v _ ,  T'v ;U2 — 11
(-=) t‘”(”c—z)’ V=g

If ¥ = ve, holds:
W
Py 7<px67> , W=A(W —up,)
With 8 = v/c the electric field of a moving charge is given by:

Q (1-B%)e
dmeor? (1 — B2 sin?(6))3/2

E=

The electromagnetic field transforms according to:

q , _ _ . GxE
E =yE+vxB) , B’=7<B—“X2 )
C

Length, mass and time transform according 4, = vAto, m, = ymyg, Iy = lo/~, With o the quantities
in a co-moving reference frame apdhe quantities in a frame moving with velocityw.r.t. it. The proper
time 7 is defined asdr? = ds?/c?, soAT = At/~. For energy and momentum hold§: = m,c? = yW,

13
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W2 = m2c* + p2c®. p = myv = ymov = Wu/c?, andpc = W3 where3 = v/c. Theforceis definedby
F = dp/dt.
4-vectors have the property that their modulus is independent of the observer: their companehtsnge
after a coordinate transformation but not their modulus. T(De difference of two 4-vectors transforms also as
a 4-vector. The 4-vector for the velocity is given by = di The relation with the “common” velocity
T

ut = dat/dt is: U* = (yu',icy). For particles with nonzero restmass hol@&'U, = —c?, for particles
with zero restmass (so with = ¢) holds: U*U,, = 0. The 4-vector for energy and momentum is given by:
p® = moU® = (yp',iW/c). SO:pap® = —mic? = p*> — W?2/c2.

3.1.2 Red and blue shift

There are three causes of red and blue shifts:

!
1. Motion: withé, - &, = cos() follows: f7 = (1- M).
C

This can give both red- and blueshift, alsdo the direction of motion.

2. Gravitational redshift:A—f = ﬂ
f rc?

3. Redshift because the universe expands, resulting in e.g. the cosmic background radiation:

)\0 o RO

M Ry

3.1.3 The stress-energy tensor and the field tensor

The stress-energy tensor is given by:

1
Ty = (0¢® + p)uytty + PGy + =z (FuaFS + 29 FPFop)

The conservation laws can than be writtenesT*” = 0. The electromagnetic field tensor is given by:

_ 94 04a
9z 928

Fup

with A, := (4,iV/c) and.J,, := (J,icp). The Maxwell equations can than be written as:
0, F* = poJ* | 8)\Fm, + 8MF,,)\ + &,F)\# =0

The equations of motion for a charged particle in an EM field become with the field tensor:

dp
e

3.2 General relativity

3.2.1 Riemannian geometry, the Einstein tensor
The basic principles of general relativity are:

1. The geodesic postulate: free falling particles move along geodesics of space-time with the proper time
7 or arc lengths as parameter. For particles with zero rest mass (photons), the use of a free parameter is
required because for them holds = 0. From§ | ds = 0 the equations of motion can be derived:

d%z™ o dzP dx?

s s ds
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2. Theprinciple of equivalenceinertial mass= gravitational mass=- gravitation is equivalent with a
curved space-time were particles move along geodesics.

3. By a proper choice of the coordinate system it is possible to make the metric locally flat in each point
X;. gaﬁ(mi) = Nap ::diag(—l, 1,1, 1).
TheRiemann tensas defined asRﬁaBT” =V, VTH —-V3V,TH, where the covariant derivative is given

by Vja"' = ajai + F;kak andvja,- = ajai — Ffjak. Here,

Oxiozk oz!’

jk:2 B

i _ 9" (9gy | Ogu.  Ogk
Oxk ~ OxJ Oxt

> , for Euclidean spaces this reduces]ﬂ% =

are theChristoffel symbolsFor a second-order tensor holdS.,, Vs|T) = RL ;T + R], T4, Via, =

akaé —F%a}—i—f‘}éwé, Viaij = Ogai; — T ai; —Fijajl andVia¥ = 9ya® +T'%,a% +Fila“. The following
. (e} — (e} (073 (e} Lo} (e} o

holds: RS, = 9,I', — 8,14, + 2,1, —T%,T7 .

TheRicci tensoris a contraction of the Riemann tensdt., g := Rthﬁ’ which is symmetric:R.3 = Rgo.

TheBianchi identitiesare: VaRagu + Vi Ragay + ViRagur = 0.

The Einstein tensois given by: G*# := R — 14°FR, whereR := R is theRicci scalar for which

holds: VsGas = 0. With the variational principle [(£(g,.) — Rc?/167k)+/|gld*z = 0 for variations

9 — 9uv + 99, theEinstein field equationsan be derived:

8Tk 8Tk

Gap = —5-Tap| » Which can also be written a3 = ——(Top — 59a87T}")
C C

For empty space this is equivalentf,z = 0. The equatioR. s, = 0 has as only solution a flat space.

The Einstein equations are 10 independent equations, which are of second gggeirrom this, the Laplace
equation from Newtonian gravitation can be derived by stating: = 7., + k.., Wherelh| < 1. In the
stationary case, this resultsWhog = 8mro/c?.

. . 8
The most general form of the field equationsis;s — %gagR + Agag = —Ff B
C

whereA is thecosmological constanfhis constant plays a role in inflatory models of the universe.

3.2.2 The line element

: . . o oz ok
Themetric tensoiin an Euclidean space is given by = - —,
- ozt Jxd
In general holdsds? = g,,,dz*dz”. In special relativity this becomes? = —c2dt? + daz? + dy? + dz°.

This metric,n,, :=diag(—1, 1,1, 1), is called theMinkowski metric

Theexternal Schwarzschild metrapplies in vacuum outside a spherical mass distribution, and is given by:

2 om\ !
ds® = (1 T —m) Adi? + <1 - —m> dr? + r2d02
T T

Here,m := Mr/c? is thegeometrical massf an object with mas3/, anddQ? = d6? + sin? fde?. This
metric is singular for = 2m = 2xM/c2. If an object is smaller than its event horizdm, that implies that
its escape velocity is- ¢, itis called ablack hole The Newtonian limit of this metric is given by:

ds? = —(1+2V)Pdt* + (1 — 2V)(da® + dy? + dz?)

whereV = —xM/r is the Newtonian gravitation potential. In general relativity, the componenjgs,ofire
associated with the potentials and the derivativeg,pfwith the field strength.

The Kruskal-Szekeres coordinates are used to solve certain problems with the Schwarzschild metric near
r = 2m. They are defined by:




16 Physics Formulary by ir. J.C.A. Wevers

e > 2m:
t
u = # —lexp (%) cosh <m>
t
voo= ﬁ —lexp (—) sinh (R)
o r < 2m:
t
u = 1-— ﬁ exp (4—) sinh <m)
T T t
v 1/ o EXP | 7 ) cos (4m)

e r = 2m: here, the Kruskal coordinates are singular, which is necessary to eliminate the coordinate
singularity there.

The line element in these coordinates is given by:

32m3 e—'r‘/2m

ds? = — (dv? — du?) + r2d9?

r

The liner = 2m corresponds ta. = v = 0, the limit z° — co with u = v and2® — —oo with u = —v. The
Kruskal coordinates are only singular on the hyperhdle u? = 1, this corresponds with = 0. On the line
dv = +du holdsdf = dp = ds = 0.

For the metric outside a rotating, charged spherical mass the Newman metric applies:

2mr — € r2 + a? cos? 0
ds* = (1— 5—5—5= | 2dt* - B2 — (72 + a2 cos® 0)dO? —
’ ( r2+a2cos,29)c 2 —omr +a2—e2 ) (r® + a” cos™0)

5 o (2mr—e?)a?sin?0\ . 5, . , 2a(2mr —e?)\ . ,
(7“ +a®+ P aZoo 0 sin® Odp” + pomn eyl A 0(dp)(cdt)

2

wherem = kM/c?, a = L/Mcande = kQ/eoc?.
A rotating charged black hole has an event horizon iigh= m + vm?2 — a? — e2.

Near rotating black holes frame dragging occurs becguses 0. For the Kerr metric = 0, a # 0) then
follows that within the surfac&®g = m + vm?2 — a2 cos?  (de ergosphere) no particle can be at rest.

3.2.3 Planetary orbits and the perihelium shift

To find a planetary orbit, the variational problénf ds = 0 has to be solved. This is equivalent to the problem
§f ds®> =6 [ gi;da*dx? = 0. Substituting the external Schwarzschild metric yields for a planetary orbit:

d_u dQ—u-i-u —d—u(iﬁmu—i-ﬁ)
dp \ dp? dy h?

whereu := 1/r andh = r?¢ =constant. The terfmu is not present in the classical solution. This term can

. . , M h?
in the classical case also be found from a poteffial) = —KT (1 + r_Q) .

The orbital equation gives=constant as solution, or can, after dividingdy/ dy, be solved with perturbation
theory. In zeroth order, this results in an elliptical orhit((¢) = A + B cos(¢) with A = m/h? andB an
arbitrary constant. In first order, this becomes:

B2 B?
u1(p) = A+ Beos(p —ep) + ¢ (A + A 64 cos(2<p)>
wheres = 3m?/h? is small. The perihelion of a planet is the point for whicks minimal, oru maximal.
This is the case ifos(p — cp) = 0 = ¢ &~ 27n(1 + ). For the perihelion shift then followsA¢ = 27 =
6mm?/h? per orbit.
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3.2.4 The trajectory of a photon

For the trajectory of a photon (and for each particle with zero restmass) #ields- 0. Substituting the
external Schwarzschild metric results in the following orbital equation:

3.2.5 Gravitational waves

Starting with the approximation,,, = 7, + h,, for weak gravitational fields and the definitidr), =
B — 3nuh it follows thatoh),, = 0 if the gauge conditio®h,,, /0z” = 0 is satisfied. From this, it
follows that the loss of energy of a mechanical system, if the occurring velocitieg arend for wavelengths

> the size of the system, is given by:
AB_ G 5~ (49
dt — 5cb —\ dt®

with Q;; = [ o(z;x; — 36:;7%)d®x the mass quadrupole moment.

3.2.6 Cosmology

If for the universe as a whole is assumed:
1. There exists a global time coordinate which acts’asf a Gaussian coordinate system,
2. The 3-dimensional spaces are isotrope for a certain valu®, of
3. Each point is equivalent to each other point for a fix&d

then theRobertson-Walker metrican be derived for the line element:

R*(t)
kr?
(1)

For thescalefactorR(¢) the following equations can be derived:

ds* = —c2dt* + (dr?* + 12d0?)

. - ) - )
ﬁJrR + kc :787mp+A and R® + kc :87mg+é

R R? c? R? 3 3

wherep is the pressure and the density of the universe. K = 0 can be derived for theleceleration
parametery:

RR  4mko
R 3H?

q:

whereH = R/R is Hubble’s constant This is a measure of the velocity with which galaxies far away are
moving away from each other, and has the valugrs 4+ 25) km-s~1-Mpc~1. This gives 3 possible conditions
for the universe (herd} is the total amount of energy in the universe):

1. Parabolical universe £k =0, W =0, q = % The expansion velocity of the universe 0 if ¢ — oc.
The hereto relatedritical densityis o. = 3H?/87k.

2. Hyperbolical universe: k = —1, W < 0, ¢ < %. The expansion velocity of the universe remains

2
positive forever.

3. Elliptical universe: k =1, W > 0, q > % The expansion velocity of the universe becomes negative
after some time: the universe starts collapsing.




Chapter 4

Oscillations

4.1 Harmonic oscillations

The general form of a harmonic oscillation iB(t) = We!«“!=%) = ¥ cos(wt + ¢),

where¥ is theamplitude A superposition of several harmonic oscillationi¢h the same frequencgsults in
another harmonic oscillation: R X
Z U, cos(a; + wt) = P cos(f + wt)

with: .
>0, sin(ay)
tan =t and ¥ = ‘1112 +2 ‘ilt‘il cos(ay; — a;
0= o] RO BRI
. I t d™x(t
For harmonic oscillations holds/x(t)dt = ﬁw) and%i) = (w)"x(t).
[

4.2 Mechanic oscillations

For a construction with a spring with constaitparallel to a damping which is connected to a masg, to
which a periodic force'(t) = F cos(wt) is applied holds the equation of motient = F(t) — ki — Cx.
With complex amplitudes, this becomesnw?z = F — Cx — ikwz. With w? = C/m follows:

F

F
ivVCmd + k

= for th locity holdsz =
x (W =) 1 ik ,and for the velocity holds:
wheres = 2 — %0 The quantityZ = F'/i is called thempedancef the system. Thguality of the system
wo w
is given byQ = %

The frequency with minimgl7Z| is calledvelocity resonance frequencyhis is equal tav. In theresonance
curve|Z|/v/Cm is plotted against /wy. The width of this curve is characterized by the points whé(e)| =
|Z(w0)|\/§. In these points holds? = X andé = +£Q 1, and the width i2Awp = wy/Q.

Thestiffnesof an oscillating system is given by/x. Theamplitude resonance frequeney is the frequency
whereiwZ is minimal. This is the case fary = wo/1 — 1Q2.

Thedamping frequencyp is a measure for the time in which an oscillating system comes to rest. It is given
1 I . .
by wp = woy/1 — IToER A weak damped oscillatiofk? < 4m(C') dies out aftefl, = 27 /wp. For acritical

dampedoscillation (k* = 4mC) holdswp = 0. A strong damped oscillatiotk? > 4m(C) drops like (if
k? > 4mC) z(t) =~ xg exp(—t/T).

4.3 Electric oscillations

The impedances given by: Z = R + iX. The phase angle is := arctan(X/R). The impedance of a

resistor isR, of a capacitofl /iwC and of a self inductoiw L. The quality of a coil i) = wL/R. The total
impedance in case several elements are positioned is given by:

18
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1. Series connectiolV. = 17,
Ziov = Zi, Liot=»_L L —Zl Q—Z“ Z = R(1 +iQ0)
tot — ) tot — iy o~ ~ - -
i 3 Ctot i Cz R
2. parallel connectionV = 17,

1 1 1 1 R R
= - T = —, Ciot = Ci, Q=—, Z=+——=
Lot Z Zi " Lot zz: L, z; @ Zy 1+1Q0

Here,Zy, = 1/% andwg = \/%—C

The power given by a source is given Byt) = V (t) - I(t), SO(P), = Vet It cos(A¢)
= 1V icos(¢, — ¢;) = S3I?Re(Z) = 3V?Re(1/Z), wherecos(A¢) is the work factor.

4.4 Waves in long conductors

. . [dL d
These cables are in use for signal transfer, e.g. coax cable. For them Hglds{ T %
X

The transmission velocity is given ly= 4/ ;l—z ;l—é

4.5 Coupled conductors and transformers

For two coils enclosing each others flux holds®if; is the part of the flux originating fron, through coil 2
which is enclosed by coil 1, than holdss = M1, P21 = Mo 1. For the coefficients of mutual induction
Mij holds:

N1®1  Na®o

Mlg :M21 =M=k L1L2 = = NN1N2
Iy I

where0 < k < 1 is thecoupling factor For a transformer i% ~ 1. At full load holds:

‘/1 IQ iwM L1 N1

— — ~ —

Vo L iwlotRiaa VI Ns

4.6 Pendulums

The oscillation timel” = 1/ f, and for different types of pendulums is given by:
e Oscillating springT” = 2w+/m/C if the spring force is given by’ = C - Al.
e Physical penduluml’ = 27/I /7 with 7 the moment of force anfithe moment of inertia.

2lm

e Torsion pendulum? = 274/ /k with k = A the constant of torsion andtthe moment of inertia.
r

e Mathematical pendulun¥’ = 27/1/g with g the acceleration of gravity aridhe length of the pendu-
lum.
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Waves

5.1 The wave equation
The general form of the wave equationis: = 0, or:

2y 1 0*u  9%u @ @ 1 9%u

_—_Z_Z= il
2o o2 Top To2 2 on

whereu is the disturbance and the propagation velocity In general holdsy = fA. By definition holds:
kXA =2mandw = 27 f.
In principle, there are two types of waves:
1. Longitudinal waves: for these holds| & || .
2. Transversal waves: for these hold§ 7 L .
Thephase velocitys given byv,, = w/k. Thegroup velocityis given by:

dw dvpn k dn
ar = e R ”ph<1 ndk)

wheren is the refractive index of the medium. #f;, does not depend an holds: v, = v,. In a dispersive
medium it is possible that, > vpn Or vy < vpn, anduvg - v¢ = ¢, If one wants to transfer information with

a wave, e.g. by modulation of an EM wave, the information travels with the velocity at with a change in the
electromagnetic field propagates. This velocity is often almost equal to the group velocity.

’Ug:

For some media, the propagation velocity follows from:

e Pressure waves in a liquid or gas= \/x/o, wherex is the modulus of compression.

e For pressure waves in a gas also hotds: \/vp/o = \/YRT/M.

Pressure waves in a solid bar= /E/ o

waves in a stringy = /Fupanl/m

- A2 2mh
Surface waves on a liquid: = \/(g ﬂ) tanh <L>

=+
27 oA A

whereh is the depth of the liquid angl the surface tension. K < X holds:v ~ \/gh.

5.2 Solutions of the wave equation

5.2.1 Plane waves

In n dimensions a harmonic plane wave is defined by:

u(Z,t) = 2™ cos(wt) Z sin(k;x;)

i=1

20
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The equation for a harmonic traveling plane waveus, t) = @ cos(k - Z + wt + )

If waves reflect at the end of a spring this will result in a change in phase. A fixed end gives a phase change of
/2 to the reflected wave, with boundary conditiefi) = 0. A lose end gives no change in the phase of the
reflected wave, with boundary conditi¢fu/0x); = 0.
If an observer is moving w.r.t. the wave with a velocity,s, he will observe a change in frequency: the
Doppler effect This is given by:i = %.

0 f

5.2.2 Spherical waves

When the situation is spherical symmetric, the homogeneous wave equation is given by:
1 02 (ru) B 02 (ru)
vZ  Ot? or?

=0

with general solution:
f(r—uwt) N ng(r + vt)

u(r,t) = Cq " "

5.2.3 Cylindrical waves

When the situation has a cylindrical symmetry, the homogeneous wave equation becomes:

10%tw 10 [ Ou

22 (rZ2) =0

v2 Ot2  ror \ ' Or
This is a Bessel equation, with solutions which can be written as Hankel functions. For sufficient large values
of r these are approximated by:

u(r,t) = —= cos(k(r £ vt))

NG

5.2.4 The general solution in one dimension

Starting point is the equation:
Pulw,t) _ 3 (b ﬂ) u(z,t
oz = 2 \bmgg ) @)
whereb,, € IR. Substitutingu(z,t) = Ae!**=«!) gives two solutionsy; = w;(k) as dispersion relations.
The general solution is given by:
(oo}
u(a,t) = / (alryer =90 4 p(gyeie=ea(0))
—0o0

Because in general the frequencigsare non-linear irk there is dispersion and the solution cannot be written
any more as a sum of functions depending onlyzah vt: the wave front transforms.

5.3 The stationary phase method

Usually the Fourier integrals of the previous section cannot be calculated exactyk)fe IR the stationary

phase method can be applied. Assuming tha} is only a slowly varying function ok, one can state that the

parts of thek-axis where the phase &f: — w(k)t changes rapidly will give no net contribution to the integral
because the exponent oscillates rapidly there. The only areas contributing significantly to the integral are areas

with a stationary phase, determinedglz(kx — w(k)t) = 0. Now the following approximation is possible:

oo

N
/ a(k)ei(kxiw(k)t)dk s Z
=1

— 00

2w
d2w(k7,)
k2

exp [—igm +i(kiz — w(ki)t)]
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5.4 Green functions for the initial-value problem

This method is preferable if the solutions deviate much from the stationary solutions, like point-like excitations.
Starting with the wave equation in one dimension, With= 9% /922 holds: if Q(x, 2, ) is the solution with
9Q(z,2',0)
ot
= §(x — '), then the solution of the wave equation with arbitrary initial
Ou(z,0)
ot

initial valuesQ(z, z',0) = 6(z — ') and = 0, andP(x, 2, t) the solution with initial values
OP(z,2',0)
ot

conditionsf (z) = u(x,0) andg(z) =

P(z,2',0) = 0 and
is given by:

oo

u(x, t) = /f(x')Q(a:,ac',t)dx'—i—/g(x')P(a:,ac',t)da:'

— 00

P andQ are called thgpropagators They are defined by:

Q(z,a',t) = 3[6(x—a’ —vt)+(x—a’ +vt)]
!
Pz, 1) if |z—2'| <t
if |x—2a'|> vt
. , P(z,2',t)
Further holds the relatior®(z, ', t) = T

5.5 Waveguides and resonating cavities

The boundary conditions for a perfect conductor can be derived from the Maxwell equatiohis afunit
vector_L the surface, pointed from 1 to 2, adis a surface current density, than holds:

ii-(Dy—Dy)=0  fix(Ea—FE)=0
T_i'(BQ—Bl):O T_iX(HQ—Hl):K

—

In a waveguide holds because of the cylindrical symmet(z, ) = &(z,y)e'*>~") and B(Z,t) =
B(z,y)e'*>=«t) From this one can now deduce that3if and€, are not= 0:
i 0B, 0E. i 0B, 9E.
g =2 Moy

B, = epw? — k2 < ar M Oy B, = Epw? — Oy +epw ox

i k&'é'z . waBz s i kasz . waBZ
C epw? — k2 ox a Oy Y cuw? — k2 Oy He e

Now one can distinguish between three cases:

1. B, = 0: the Transversal Magnetic modes (TM). Boundary condit&,..s = 0.

=0.

2. E, = 0: the Transversal Electric modes (TE). Boundary condltleéof

surf

For the TE and TM modes this gives an eigenvalue probleréi feesp.5, with boundary conditions:

2 2
<% + ;—QQ) Y = —v*y with eigenvaluesy? := euw? — k?

This gives a discrete solutiofy with eigenvaluey?: k = \/suw? — 7. Forw < wy, k is imaginary
and the wave is damped. Therefosg,is called thecut-off frequency In rectangular conductors the
following expression can be found for the cut-off frequency for modeg TBf TM,,, ,,:

2
(m/a)? + (n/b)?

A =
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3. E, and B, are zero everywhere: the Transversal electromagnetic mode (TEM). Than holds:
tw,/ep andvs = v, just as if here were no waveguide. Furtiiee IR, so there exists no cut-off

frequency.
In a rectangular, 3 dimensional resonating cavity with edgésandc the possible wave numbers are given
by: k, = mn , by = nQTW , k, = "7 This results in the possible frequencies- vk /27 in the cavity:
C
v [n2  nZ o np2
f=V ot ta

For a cubic cavity, withu = b = ¢, the possible number of oscillating mod#g, for longitudinal waves is
given by:

4rad f3
Ne = 3v3

Because transversal waves have two possible polarizations holds for daerm:2 Vy,.

5.6 Non-linear wave equations
TheVan der Polequation is given by:

d’z
W — EW()(]. — 612)

dz

at +wiz =0

Bz? can be ignored for very small values of the amplitude. Substitution of e gives: w = Lwy(ic +
24/1— %52). The lowest-order instabilities grow %swo. While x is growing, the 2nd term becomes larger

and diminishes the growth. Oscillations on a time seale; * can exist. Ifz is expanded as = (9 +
exM) 4+ £22() 4 ... and this is substituted one obtains, besides periséim,lar terms- et. If it is assumed
that there exist timescales, 0 < 7 < N with 97, /0t = ™ and if the secular terms are put 0 one obtains:

d [1/de\> | 4, o (dz\?
E{§<E) + swo 5w0(16x)<g)

This is an energy equation. Energy is conserved if the left-hand side is28. 3 1/3, the right-hand side
changes sign and an increase in energy changes into a decrease of energy. This mechanism limits the growth
of oscillations.

TheKorteweg-De Vriegquation is given by:

a_u + @ _ @ 4 bQ@ =0
ot Oz a“ax or3
—— ——

non—lin  dispersive

This equation is for example a model for ion-acoustic waves in a plasma. For this equation, soliton solutions
of the following form exist:
—d

uz =) = cosh?(e(x — ct))

with ¢ = 1 + 1ad ande? = ad/(12b%).
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Optics

6.1 The bending of light

For the refraction at a surface holds;sin(6;) = n; sin(6;) wheren is therefractive indexof the material.

Snell’s law is:

me_ MU

niy - )\2 - (%)
If An <1, the change in phase of the lightdsp = 0, if An > 1 holds: Ay = 7. The refraction of light in a
material is caused by scattering from atoms. This is described by:

2
2 Ne€ I
n® =1+ E 3 J

2
oM — Wy j — W 10w

wheren, is the electron density ang} the oscillator strengthfor which holds:} " f; = 1. From this follows
J
thatv, = ¢/(1 + (nee?/2e9mw?)). From this the equation of Cauchy can be derived: ag + a;1/\%. More

o . i ar
general, it is possible to expandas:n = 2k

k=0
For an electromagnetic wave in general holds: |/, i,
The path, followed by a light ray in material can be found fré@mmat’s principle

2

2 2
5/dt:5/@ds:0:>5/n(s)ds:0
c
1 1

1

6.2 Paraxial geometrical optics

6.2.1 Lenses

The Gaussian lens formula can be deduced from Fermat’s principle with the approxineatigns- 1 and
sin ¢ = . For the refraction at a spherical surface with radiusolds:

ni n2 nyp —n2

v b R

where|v| is the distance of the object afid the distance of the image. Applying this twice results in:

wheren;, is the refractive index of the leng,is the focal length an®; and R, are the curvature radii of both
surfaces. For a double concave lens hadRis< 0, R, > 0, for a double convex lens hold®; > 0 and
R5 < 0. Further holds:
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D :=1/f is called the dioptric power of a lens. For a lens with thicknéasd diameteD holds to a good
approximationi/f = 8(n — 1)d/D?. For two lenses placed on a line with distandeolds:

L1
f A f2 fife

In these equations the following signs are being used for refraction at a spherical surface, as is seen by an
incoming light ray:

[ Quantity | + | - I
R Concave surface Convex surface
f Converging lens| Diverging lens
v Real object Virtual object
b Virtual image Real image

6.2.2 Mirrors

For images of mirrors holds:

11,12 k1 1
f v b R 2 \R w

whereh is the perpendicular distance from the point the light ray hits the mirror to the optical axis. Spherical
aberration can be reduced by not using spherical mirrors. A parabolical mirror has no spherical aberration for
light rays parallel with the optical axis and is therefore often used for telescopes. The used signs are:

[ Quantity | + | — |
R Concave mirror| Convex mirror
f Concave mirror| Convex mirror
v Real object Virtual object
b Real image Virtual image

6.2.3 Principal planes

Thenodal pointsN of a lens are defined by the figure on the right. If the lens is
surrounded by the same medium on both sides, the nodal points are the same as

the principal points H. The plané the optical axis through the principal points Ny
is called theprincipal plane If the lens is described by a matrix;; than for the

distances:; andhs to the boundary of the lens holds: ON;
-1 -1
hl = nmu 5 hg = nm22
mi2 mig

6.2.4 Magnification

Thelinear magnificatioris defined by:N = —%

Theangular magnifications defined by:N, = _ Qoyst

anone

whereagys is the size of the retinal image with the optical system angh. the size of the retinal image
without the system. Further holda? - N, = 1. For a telescope holdV = fobjective/ focular- Thef-number
is defined byf / Dobjective-
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6.3 Matrix methods

A light ray can be described by a vectora, y) with « the angle with the optical axis andthe distance to
the optical axis. The change of a light ray interacting with an optical system can be obtained using a matrix

multiplication:
()3
Y2 n

whereTr(M) = 1. M is a product of elementary matrices. These are:

1. Transfer along length My = < 1/1n (1) )

2. Refraction at a surface with dioptric powBr Mt = < (1) 71D )

6.4 Aberrations

Lenses usually do not give a perfectimage. Some causes are:

1. Chromatic aberration is caused by the fact that= n()\). This can be partially corrected with a lens
which is composed of more lenses with different functiens\). Using N lenses makes it possible to
obtain the sam¢ for V wavelengths.

2. Spherical aberrationis caused by second-order effects which are usually ignored; a spherical surface
does not make a perfect lens. Incomming rays far from the optical axis will more bent.

3. Comais caused by the fact that the principal planes of a lens are only flat near the principal axis. Further
away of the optical axis they are curved. This curvature can be both positive or negative.

4. Astigmatism: from each point of an object not on the optical axis the image is an ellipse because the
thickness of the lens is not the same everywhere.

5. Field curvature can be corrected by the human eye.

6. Distorsion gives abberations near the edges of the image. This can be corrected with a combination of
positive and negative lenses.

6.5 Reflection and transmission

If an electromagnetic wave hits a transparent medium part of the wave will reflect at the same angle as the
incident angle, and a part will be refracted at an angle according to Snell's law. It makes a difference whether
the E field of the wave isL or || w.r.t. the surface. When the coefficients of reflecticand transmissionare

defined as:
I EO'L' I ’ EOi U EO'L' [ ’ EO'L'

whereLy,. is the reflected amplitude aridy; the transmitted amplitude. Then the Fresnel equations are:

_ tan(0; — 6;) sin(6; — 6;)

= tan(6; + 6;) = sin(6; + 6;)
. 2sin(6;) cos(;) P 2sin(6;) cos(6;)
= sin(6; + 6;) cos(6; — 6;) L= sin(6; + 6;)
The following holds:t; — 7, = 1 andt; +r| = 1. If the coefficient of reflectiorz and transmissiof” are
defined as (witld; = 6,.):

I; cos(0;)

R I; cos(6;)

I
< and T =
I;
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with I = (|S|) it follows: R+ T = 1. A special case is; = 0. This happens if the angle between the
reflected and transmitted raysd6°. From Snell’s law it then followstan(6;) = n. This angle is called
Brewster’s angleThe situation with-; = 0 is not possible.

6.6 Polarization

IP _ Imax - Irnin
Ip + Iu B Imax + Imin
where the intensity of the polarized light is given Byand the intensity of the unpolarized light is given by

I,. Inax andly;, are the maximum and minimum intensities when the light passes a polarizer. If polarized
light passes through a polarizdalus lawapplies:I(6) = I(0) cos?(#) whered is the angle of the polarizer.

The polarization is defined a® =

The state of a light ray can be described by$tekes-parameterstart with 4 filters which each transmits half

the intensity. The first is independent of the polarization, the second and third are linear polarizers with the
transmission axes horizontal andiat5°, while the fourth is a circular polarizer which is opaque fostates.

Then holdsS; = 21, Sy = 215 — 211, S35 = 213 — 21, andSy = 21, — 21;.

The state of @olarizedlight ray can also be described by thenes vector
= Epge'e
b= < Eoye'# >
For the horizontalP-state holds:E = (1,0), for the verticalP-stateE = (0, 1), the R-state is given by
E = %\/5(1, —i) and theL-state byE = %\/5(1, i). The change in state of a light beam after passage of

optical equipment can be describedis= M - E;. For some types of optical equipment the Jones matfix
is given by:

Horizontal linear polarizer: ( (1) 8 )
o . 0 0
Vertical linear polarizer: 01
. . o 1 (11
Linear polarizer at-45 2\ 1 1
L , . 1 =1
Lineair polarizer at-45 oA G

1-) plate, fast axis horizontal eim/4 (

. . . 1
Homogene circular polarizor right —( i

')
1-) plate, fast axis vertical e /4< 0 —i >

Homogene circular polarizer left = (

6.7 Prisms and dispersion

A light ray passing through a prism is refracted twice and aquires a deviation from its original direction
0 = 0; + 0y + o w.r.t. the incident direction, where is the apex angld); is the angle between the incident
angle and a line perpendicular to the surface @nis the angle between the ray leaving the prism and a line
perpendicular to the surface. Wheéyvaries there is an angle for whiélbecomes minimal. For the refractive
index of the prism now holds:

Sin(%((smin + )

sin(3a)
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The dispersion of a prism is defined by:
_ A5 _ dédn
d\ dnd)

where the first factor depends on the shape and the second on the composition of the prism. For the first factor
follows:

s 2sin(5a)

% N COS(%(émin + 04))

For visible light usually holdgn/dA < 0: shorter wavelengths are stronger bent than longer. The refractive
index in this area can usually be approximated by Cauchy’s formula.

6.8 Diffraction

Fraunhofer diffraction occurs far away from the source(s). The Fraunhofer diffraction of light passing through
multiple slits is described by:
1) (sin(u)\* (sin(Nv)\>
w - () ()

whereu = 7wbsin(f)/A, v = wdsin(f)/A. N is the number of slitsh the width of a slit and{ the distance
between the slits. The maxima in intensity are givenlbin(6) = k.

The diffraction through a spherical aperture with radius described by:

1) (Abemey

The diffraction pattern of a rectangular aperture at distaceith lengtha in the z-direction andb in the
y-direction is described by:
I(xz,y)  (sin(a’) 2 sin(3') 2
e () (5)

whereo/ = kaz /2R and3’ = kby/2R.

When X rays are diffracted at a crystal holds for the position of the maxima in inteéBsityg’s relation
2dsin(8) = nA whered is the distance between the crystal layers.

Close at the source the Fraunhofermodel is invalid because it ignores the angle-dependence of the reflected
waves. This is described by tledliquity or inclination factor, which describes the directionality of the sec-

ondary emissionsE () = 1 Ey(1 + cos(6)) whered is the angle w.r.t. the optical axis.

Diffraction limits theresolutionof a system. This is the minimum angle),..;,, between two incident rays
coming from points far away for which their refraction patterns can be detected separately. For a circular slit
holds: A, = 1.220/D whereD is the diameter of the slit.

For a grating holds:Afymin = 2M\/(Nacos(6,,)) wherea is the distance between two peaks akdthe

number of peaks. The minimum difference between two wavelengths that gives a separated diffraction pattern
in a multiple slit geometry is given b\ /\ = nN whereN is the number of lines and the order of the
pattern.

6.9 Special optical effects

e Birefringe and dichroism. D is not parallel withE if the polarizability P of a material is not equal in
all directions. There are at least 3 directions, phiacipal axesin which they are parallel. This results
in 3 refractive indices:; which can be used to construct Fresnel’s ellipsoid. In ease- n3 # nq,
which happens e.g. at trigonal, hexagonal and tetragonal crystals there is one optical axis in the direction
of ny. Incident light rays can now be split up in two parts: trdinary waveis linear polarizedL the
plane through the transmission direction and the optical axiseXtraordinary wavas linear polarized
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in the plane through the transmission direction and the optical Bxitiroismis caused by a different
absorption of the ordinary and extraordinary wave in some mateisble image®ccur when the
incident ray makes an angle with the optical axis: the extraordinary wave will refract, the ordinary will
not.

Retarders: waveplates and compensatordncident light will have a phase shift @y = 27d(|ng —
ne|)/ Ao if an uniaxial crystal is cut in such a way that the optical axis is parallel with the front and back
plane. Here) is the wavelength in vacuum amg andn, the refractive indices for the ordinary and
extraordinary wave. For a quarter-wave plate hollg: = /2.

The Kerr-effect: isotropic, transparent materials can become birefringent when placed in an electric
field. In that case, the optical axis is paralleHo The difference in refractive index in the two directions
is given by: An = MK E?, whereK is theKerr constantof the material. If the electrodes have an

effective lengthv and are separated by a distankehe retardation is given byAy = 27 K(V?/d?,
whereV is the applied voltage.

e The Pockelsor linear electro-optical effect can occur in 20 (from a total of 32) crystal symmetry classes,

namely those without a centre of symmetry. These crystals arep@gzoelectric their polarization
changes when a pressure is applied and vice vétsa:pd + <o x E. The retardation in a Pockels cell is
Ap = 2mndre3V/\o Wherergs is the 6-3 element of the electro-optic tensor.

e The Faraday effect the polarization of light passing through material with lendthnd to which a
magnetic field is applied in the propagation direction is rotated by an ghgteV Bd whereV is the
Verdet constant

e Cerenkov radiation arises when a charged particle with> v arrives. The radiation is emitted within
a cone with an apex angtewith sin(a) = ¢/¢medium = ¢/nvy.

6.10 The Fabry-Perot interferometer

For a Fabry-Perot interferometer holds in
general:T + R + A = 1 whereT is the
transmission facto the reflection factor
and A the absorption factor. If" is given
by F = 4R/(1 — R)? it follows for the
intensity distribution:

It_{l A r 1
I 1—R] 1+ Fsin%()

The tel’m[l + FSin2(9)]_1 = A(H) iS Source Lens d ] Screen
called theAiry function Focussing lens

The width of the peaks at half height is given py= 4/V/F. ThefinesseF is defined asF = J7vF. The
maximum resolution is then given by f,in, = ¢/2ndF.




Chapter 7

Statistical physics

7.1 Degrees of freedom

A molecule consisting of atoms has = 3n degrees of freedom. There are 3 translational degrees of freedom,
a linear molecule has = 3n — 5 vibrational degrees of freedom and a non-linear moleswe 3n — 6. A
linear molecule has 2 rotational degrees of freedom and a non-linear molecule 3.

Because vibrational degrees of freedom account for both kinetic and potential energy they count double. So,
for linear molecules this results in a total o 6n — 5. For non-linear molecules this gives= 6n — 6. The
average energy of a molecule in thermodynamic equilibriufifis,) = %skT. Each degree of freedom of a
molecule has in principle the same energy: phiaciple of equipartition
The rotational and vibrational energy of a molecule are:

2
—1
21

Wiot = s=1(1+ 1) = Bl(l + 1), Wi = (v + 3)liwg

The vibrational levels are excitedifl" ~ hw, the rotational levels of a hetronuclear molecule are excited if
kT =~ 2B. For homonuclear molecules additional selection rules apply so the rotational levels are well coupled
if kT ~ 6B.

7.2 The energy distribution function

The general form of the equilibrium velocity distribution function is
P(vg, vy, v;)dvgduydv, = P(vg)dvy - P(vy)dvy - P(v;)dv, with

Pos)dv; = — AW
V; vzfaﬁexp o2 Vi

wherea = /2kT/m is themost probable velocitgf a particle. The average velocity is given ky) =
20/ /T, and<v2> = %aQ. The distribution as a function of the absolute value of the velocity is given by:

dN 4N mu?
GV Y 2exp (T
dv _ adyr L P\ T kT

The general form of the energy distribution function then becomes:

Py = (£ e (<) i

wherec(s) is a normalization constant, given by:

1. Evens: s = 2[: ¢(s) =

(- 1)
2l

2. 0dds: 5 =20+ 1: (s) = ——p

30
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7.3 Pressure on a wall

The number of molecules that collides with a wall with surfaceithin a timer is given by:

/ / / BN = 7 ] 7nAvT cos(0) P(v, 0, o)dvdodp

0 0 0

From this follows for the particle flux on the wal = 1n (v). For the pressure on the wall then follows:

. 2mu cos(0)d> N 2
PBp=""""""  sop=-n(E
p I , S0 p=gn(E)

7.4 The equation of state

If intermolecular forces and the volume of the molecules can be neglected then for gasgs-$rofn (E)
and(E) = 2kT can be derived:

pV =n,RT = %Nm (v?)

Here,n; is the number omolesparticles andV is the total number of particles within volumé If the own
volume and the intermolecular forces cannot be neglectedahaler Waalgquation can be derived:

2
(p + ‘Z‘Q) (V — bng) = ngRT

There is an isotherme with a horizontal point of inflection. In the Van der Waals equation this corresponds
with thecritical temperature, pressu@ndvolumeof the gas. This is the upper limit of the area of coexistence
between liquid and vapor. Frotp/dV = 0 andd?p/dV? = 0 follows:

8a

Tcr = m V::r = 3bns

o a

K pCI‘ - 27b2 Y
For the critical point holdspc, Vi, cx/ RTer = g which differs from the value of 1 which follows from the
general gas law.

Scaled on the critical quantities, with := p/pc,, T* = T/Tc, andV,}, = V,,, / Vi, o With V,, := V/n, holds:

m

* 3 * *
(p +W) (Vi —3)=3T

Gases behave the same for equal values of the reduced quantitilesv tiféhe corresponding statea virial
expansioris used for even more accurate views:

m m

TheBoyle temperaturéy is the temperature for which the 2nd virial coefficient is 0. In a Van der Waals gas,
this happens @ = a/Rb. Theinversion temperatur@; = 275.

The equation of state for solids and liquids is given by:

Vv 1 /0V 1 /oV
L 14 AT —kpAp =1+ = (Z2) AT+ = (Z2) A
Vo L TwAl A +V<8T>p +V<ap>T Y
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7.5 Collisions between molecules

The collision probability of a particle in a gas that is translated over a distanisegiven bynodx, whereo is
thecross sectionThe mean free path is given lfy= I with u = \/v? + v3 the relative velocity between
nuo

. 1 1 .
the particles. Ifm; < mq holds: Y- h + m, sol = —. If my = my holds: ¢ = . This means
1 mo no naﬂ

. - L 1 .
that the average time between two collisions is giverr by —. If the molecules are approximated by hard
nov

spheres the cross sectionis= 1w (D? + D3). The average distance between two molecul@s5sn /3.
Collisions between molecules and small particles in a solution result iBrthenian motion For the average

motion of a particle with radiu® can be derived(z?) = % (r*) = kTt/3mnR.

A gas is called &Knudsen gasf ¢ > the dimensions of the gas, something that can easily occur at low
pressures. The equilibrium condition for a vessel which has a hole with sutfaté for which holds that
0> \/A/mis: n1/Ti = na\/Ty. Together with the general gas law follows://T1 = pa2/v/Ts.

If two plates move along each other at a distatiegth velocity w, theviscosityn is given by: F,, = ¢ Yo

The velocity profile between the plates is in that case givewby) = zw,./d. It can be derived thaj =
3ol (v) wherev is thethermal velocity

-1

The heat conductance in a non-moving gas is describe%?y:: KA ( , Which results in a temper-

ature profilel’(z) = Ty + z(T> — T1)/d. It can be derived that = £C,,ynl (v) /Na. Also holds:k = Cyn.
A better expression fot can be obtained with thEucken correctionk = (1 + 9R/4¢,,v)Cy - n with an
error<5%.

7.6 Interaction between molecules

For dipole interaction between molecules can be derivedlthat —1/75. If the distance between two
molecules approaches the molecular diamétex repulsing force between the electron clouds appears. This
force can be described Wy,ep, ~ exp(—77r) Of Viep = +C5/r® with 12 < s < 20. This results in the
Lennard-Jonegotential for intermolecular forces:

o= (2)-(2)

with a minimume atr = r,,. The following holds:D ~ 0.89r,,. For the Van der Waals coefficienisandb
and the critical quantities holds:= 5.275N2 D3¢, b = 1.3N7 D3, kTi, = 1.2¢ and Vi, 1o = 3.9Ns D3,

A more simple model for intermolecular forces assumes a potdifidl = oo for » < D, U(r) = Uy for
D <r <3DandU(r) = 0forr > 3D. This gives for the potential energy of one moleculg,,; =

3D
/ U(r)F(r)dr.
D

with F'(r) the spatial distribution function in spherical coordinates, which for a homogeneous distribution is
given by: F'(r)dr = 4nzr3dr.

Some useful mathematical relations are:

i Ji @E [
—r 2 2n ! ™ 2
z"e dxr =n! , e dy = —— Y 22Tl dr = Lpl
n192n+1 2
0 0 0




Chapter 8

Thermodynamics

8.1 Mathematical introduction

If there exists a relatiorf(x, y, z) = 0 between 3 variables, one can write:= z(y, z), y = y(«, z) and
z = z(xz,y). Thetotal differentialdz of z is than given by:

0z 0z
42 = <%>yd“ <a_y)dy

By writing this also fordx anddy it can be obtained that

(). (&), (&),

Becauselz is a total differential holdg dz = 0.

A homogeneous function of degree obeys: c™ F(z,y,z) = F(ex,ey,ez). For such a function Euler’s

theorem applies:

F F F
mF(z,y,z) = :ca— + ya— + za—
x

8.2 Definitions

. . - 1
The isochoric pressure coefficiefity = — »
p \oT )

1
The isothermal compressibilityyy = —— 6_V
VA\dp/,

The isobaric volume coefficient,, = 1 <6‘V>
p

v \orT

The adiabatic compressibility:g = —i 6‘_V
VA\dp/g

For an ideal gas followsy, = 1/T, kr = 1/pandfy = —1/V.

8.3 Thermal heat capacity

)

e The specific heat at constaktis: Cx =T (—2

N————

o))

X

),
),

‘ ©
T

¢ The specific heat at constant pressurg:= (

g3

e The specific heat at constant volundg; = (
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For an ideal gas holds,,, — C,,vv = R. Further, if the temperature is high enough to thermalize all internal
rotational and vibrational degrees of freedom, hotds: = 1 sR. HenceC,, = i (s+2)R. For their ratio now
follows v = (2 + s)/s. For a lowerT’ one needs only to consider the thermalized degrees of freedom. For a
Van der Waals gas hold§!,,y = £sR + ap/RT?.

Ap v ov\* [ ap
C,—Cyv=T(==) (=) =-T(= =) >0
-a=1(5), (), (), (7). 2
Becausddp/0V)r is always< 0, the following is always validC, > Cy . If the coefficient of expansion is
0,C, = Cy, and also af" = OK.

In general holds:

8.4 The laws of thermodynamics

The zeroth law states that heat flows from higher to lower temperatures. The first law is the conservation of
energy. For a closed system holdg:= AU + W, where( is the total added heat}’ the work done and

AU the difference in the internal energy. In differential form this becoriés = dU + dW, whered means

that the it is not a differential of a quantity of state. For a quasi-static process ladlids= pdV'. So for a
reversible process holdgQ) = dU + pdV'.

For an open (flowing) system the first law @:= AH + W; + AFEyin + AE,o. One can extract an amount
of work W, from the system or add’; = —W; to the system.

The second law states: for a closed system there exists an additive giSantthed the entropy, the differential
of which has the following property:

aQ
> 2
ds

If the only processes occurring are reversible holdS: = @Q,../T. So, the entropy difference after a

reversible process is:
2

drev
sos- [ 12

1

erev
T

So, for a reversible cycle hold% =0.

a/"—CQiH
T

The third law of thermodynamics is (Nernst):

. 0S
A (a_X)T =0

From this it can be concluded that the thermal heat capasity if 77 — 0, so absolute zero temperature
cannot be reached by cooling through a finite number of steps.

< 0.

For an irreversible cycle hold#

8.5 State functions and Maxwell relations

The quantities of state and their differentials are:

Internal energy: U dU =TdS — pdV
Enthalpy: H=U+pV  dH=TdS+Vdp
Free energy: F=U-TS dF = —=SdT — pdV
Gibbs free enthalpy: G=H - TS dG = —-SdT + Vdp
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From this one can derive Maxwell’s relations:

OTN __(Op\ (OT\ _(OVN o (dp\ _(0S\ (V) _ (05
avs_ 95 )y’ op S_ 8Sp’ 6‘TV_ ov )’ 8Tp_ op ) r
From the total differential and the definitions@f- andC,, it can be derived that:

_ Ip B oV
TdS = CydT +T (6_T>V dv and TdS = C,dT — T <6T>pdp

For an ideal gas also holds:

T 1% T p
S, =Cyln|=)+RIn|{— )+ S and S,, = C,1n (—) —Rln (—) + S
v (TO) (Vb) 0 b To Do 0

Helmholtz’ equations are:

oUu Op OH ov
Y () Y vy
(aV)T (aT)V P (ap)T v (aT),,

for an enlarged surface holdgW,., = —ydA, with - the surface tension. From this follows:
(U _(oF
7= \oa), " \94),

Work done
Heat added

8.6 Processes

Theefficiencyy of a process is given by} =

Cold delivered

TheCold factor¢ of a cooling down process is given by = Work added

Reversible adiabatic processes

For adiabatic processes hold$: = U; — Us. For reversible adiabatic processes holds Poisson’s equation:
with v = C,/Cy one gets thapV’? =constant. Also holdsT'V*~! =constant and'p!~7 =constant.
Adiabatics exhibit a greater steepngsg diagram than isothermics because- 1.

Isobaric processes
Here holds:H, — H, = ff CpdT. For areversible isobaric process holds; — H; = Qrev-
The throttle process

This is also called th@oule-Kelvineffect and is an adiabatic expansion of a gas through a porous material or a
small opening. Heré{ is a conserved quantity, amd > 0. In general this is accompanied with a change in
temperature. The quantity which is important here istkinettle coefficient

oT 1 ov
=) == |T|=] -V
(%), | (57),
Theinversion temperatures the temperature where an adiabatically expanding gas keeps the same tempera-

ture. If T > T; the gas heats up, If < T; the gas cools dowrll; = 273, with for Tg: [0(pV)/0p]r = 0.
The throttle process is e.g. applied in refridgerators.

The Carnotprocess

The system undergoes a reversible cycle with 2 isothemics and 2 adiabatics:
1. Isothermic expansion dt . The system absorbs a h&at from the reservoir.

2. Adiabatic expansion with a temperature drofito
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3. Isothermic compression &%, removingQ-. from the system.
4. Adiabatic compression tb;.

The efficiency for Carnot’s process is:

The Carnot efficiency)c is the maximal efficiency at which a heat machine can operate. If the process is
applied in reverse order and the system performs a wadtkthe cold factor is given by:

_ Q2] _ |Q2] _ T
w Q1] — Q2| T —Th

£

The Stirling process

Stirling’s cycle exists of 2 isothermics and 2 isochorics. The efficiency in the ideal case is the same as for
Carnot’s cycle.

8.7 Maximal work

Consider a system that changes from state 1 into state 2, with the temperature and pressure of the surroundings
given byT, andpg. The maximum work which can be obtained from this change is, when all processes are
reversible:

1. Closed systemiV . = (U1 — UQ) — T()(Sl — 52) er()(Vl — VQ)
2. Open SyStemeax = (Hl — H2) — ’_T()(Sl — 52) — AFBEyin — AEpot.

The minimal work needed to attain a certain statéii%;;n = —Wmax.

8.8 Phase transitions

Phase transitions are isothermic and isobarieiGe= 0. When the phases are indicateddays and~ holds:
G =GP and

r
ASy, = ng - Sgb = %
0

whererg,, is the transition heat of phageto phasen andTj is the transition temperature. The following
holds:rgy = rog andrga = rya — 743. Further

oG
()
ar ),

soG has a twist in the transition point. In a two phase system Clapeyron’s equation is valid:

d_p _ S’;);L B Sﬁz _ "Ba
al'  ve-Vy (Ve -VIT

m m

For an ideal gas one finds for the vapor line at some distance from the critical point:
p =poe "Pe/RT

There exist also phase transitions with, = 0. For those there will occur only a discontinuity in the second
derivates of7,,,. These second-order transitions appearganization phenomena

A phase-change of the 3rd order, so with @G, /9T3], non continuous arises e.g. when ferromagnetic
iron changes to the paramagnetic state.
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8.9 Thermodynamic potential

When the number of particles within a system changes this number becomes a third quantity of state. Because
addition of matter usually takes place at constaandT’, G is the relevant quantity. If a system exists of more
components this becomes:

dG = =SdT + Vdp+ Y _ pdn;

oG
wherey = B

) is called the thermodynamic potential. This ipatial quantity ForV holds:
p,T,n;

whereV/; is the partial volume of componentThe following holds:

Ve = Y aiVi
0 = > xdV;

wherez; = n;/n is the molar fraction of componeit The molar volume of a mixture of two components
can be a concave line inlé-z, diagram: the mixing contracts the volume.

The thermodynamic potentials are not independent in a multiple-phase system. It can be derived that
> ndp; = —SdT + Vdp, this gives at constaptandT”: > x;dp; = 0 (Gibbs-Duhmen).

Each component has as mugls as there are phases. The number of free parameters in a system with
components ang different phases is given bfy=c+ 2 — p.

8.10 Ideal mixtures
For a mixture ofn components holds (the indéxs the value for the pure component):

0 0 0
Umixture = § anz ) Hmixture = E nsz ) Smixture =n E l'ZSZ + ASmix

where for ideal gases hold&S,,;x = —nR > x; In(z;).

For the thermodynamic potentials holgs: = p? + RT In(z;) < u{. A mixture of two liquids is rarely ideal:

this is usually only the case for chemically related components or isotopes. In spite of this holds Raoult’s law
for the vapour pressure holds for many binary mixtungs= x;p? = y;p. Here isz; the fraction of theith
component in liquid phase ang the fraction of theth component in gas phase.

A solution of one component in another gives rise to an increase in the boiling4dinand a decrease of
the freezing poinAAT;. Forzs < 1 holds:

RT} RT?
ATk = k T2 , ATS = — S i)
TBa Ty
with r3, the evaporation heat angz < 0 the melting heat. For thesmotic pressurél of a solution holds:

vy

m

1= SCQRT

8.11 Conditions for equilibrium

When a system evolves towards equilibrium the only changes that are possible are those for which holds:
(dS)uvy > 0or(dU)s,vy < 0or(dH)sp < 0or (dF)ryv < 0or(dG)r, < 0. In equilibrium for each
component holdsu? = u? = 1.
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8.12 Statistical basis for thermodynamics

The number of possibilitie® to distributeNV particles onm possible energy levels, each witlydold degen-
eracy is called the thermodynamic probability and is given by:

P:N!H%

The most probable distribution, that with the maximum valueffors theequilibrium state When Stirling’s
equationIn(n!) ~ nln(n) — n is used, one finds for a discrete system the Maxwell-Boltzmann distribution.
The occupation numbers in equilibrium are then given by:

no= Ve (Wi
z*Zgz Xp kT

Thestate sun¥ is a normalization constant, given b:= > g; exp(—W; /kT). For an ideal gas holds:

V (2rmkT)3/?
I==m

The entropy can then be defined gS:= k In(P) |. For a system in thermodynamic equilibrium this becomes:

U VA U zN

: 3/2
For an ideal gas, with’ = kT then holds:S = 3kN + kN In (%)

8.13 Application to other systems

Thermodynamics can be applied to other systems than gases and liquids. To do this @hd/terrmpdV has
to be replaced with the correct work term, lig&V,., = — Fdl for the stretching of a wireJW,, = —ydA
for the expansion of a soap bubbled@i,., = —BdM for a magnetic system.

A rotating, non-charged black hole has a temparaturE ef fic/8mkm. It has an entropy = Akc?/4hx
with A the area of its event horizon. For a Schwarzschild black Hoie given by A = 167m?2. Hawkings
area theorem states that /dt > 0.

Hence, the lifetime of a black hole m3.
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Transport phenomena

9.1 Mathematical introduction

An important relation is: ifX is a quantity of a volume element which travels from positido 7 + di’in a
time dt, the total differentiali.X is then given by:

AX 8de+5'Xd +aXdZ+ath:$ dX 5‘Xv Jr(9X Jr(9X Jr(9X

= — —-— —-— - — = Uz + —0 — U, + ——
e ay YT oz at at ay T Bz ot
. . X X

This results in general to:Cfi—t = aa—t + (- V)X |

From this follows that also holds %/// Xd*V = %/// Xd*V + ﬁX(U- ii)d* A

where the volumé@’ is surrounded by surfacé. Some properties of the operator are:

div(¢v) = ¢dive + grade - rot(¢7) = ¢rot@ + (gradp) x & rot gradé = 0
div(@ x ¥) = ¥ - (rotii) — @ - (rot¥)  rot rot¥ = grad dive — V2§ div rotvV = 0
div gradg = V?¢ V25 = (V201, V2ug, V203)

Here, is an arbitrary vector field and an arbitrary scalar field. Some important integral theorems are:
Gauss: ﬁ(ﬂ ii)d*A = ///(divﬁ)d3v
Stokes for a scalar field%(qb - &)ds = //(ﬁ x grade)d? A
Stokes for a vector field?{(ﬁ- € )ds = //(row- i )d* A

This results in: #(rotﬁ- i)d*A =0

Ostrogradsky: ﬁ(ﬁ x T)d*A = ///(rot@’)d3A
#(qﬁ)dQA = ///(gradqb)d3V

Here, the orientable surfagd d? A is limited by the Jordan curvé ds.

9.2 Conservation laws

On a volume work two types of forces:
1. The forcefo on each volume element. For gravity holg%:: 0g.

2. Surface forces working only on the marginsFor these holds: = 7 T, whereT is thestress tensor

39
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T can be split in a parpl representing the normal tensions and a Fartepresenting the shear stresses:
T = T’ + pl, wherel is the unit tensor. When viscous aspects can be ignored holds=divgracp.

When the flow velocity ig/ at position” holds on positiorF + d:
odr)y= o) + dr - (gradv)
~—~— ~——
translation  rotation, deformation, dilatation

The quantityL:=grad’ can be split in a symmetric pabtand an antisymmetric paW. L = D + W with

1 /0v; Ov; 1 /0v; Ov;
Dj: === J Wi == = -
U 2 (63:] + 63:1) ’ * 2 <8$J 6331
When the rotation ovorticity & = rot¢' is introduced holdsW;; = %eijkwk. & represents the local rotation
velocity: dr - W = tw x dr.

For aNewtonian liquicholds: T’ = 27D. Here,, is the dynamical viscosity. This is related to the shear stress
7 by:
5‘vi
Tig = N7
J 6xj
For compressible media can be statdd: = ('dive’)l + 2nD. From equating the thermodynamical and
mechanical pressure it follow8n’ + 2n = 0. If the viscosity is constant holdgiv(2D) = V2% + grad divd.

The conservation laws for mass, momentum and energy for continuous media can be written in both integral
and differential form. They are:

Integral notation:

1. Conservation of massgt /// od3V + ﬁg(_’- ii)d*A =0

2. Conservation of momentun% /// oUd*V + #gﬁ(”~ i)d?A = // fod®V + ﬁﬁ -Td?A

3. Conservation of energyg—t ///(%02 +e)od®V + #(%’UZ +e)o(7-it)d?A =

_#(*-ﬁ)d2A+///(U-ﬁ)d3v+ﬁ(ﬁ-m)dm

1. Conservation of massaa'—f +div-(o7) =0

Differential notation:

—
— —

2. Conservation of momentumg—: + (0¥ V)0 = fo + divT = fy — gradp + divT’
. ds I
3. Conservation of enerngg =p— —=—=—divg+ T :D

Here,e is the internal energy per unit of maB¥m ands is the entropy per unit of mas§y/'m. ¢ = —kVTis

the heat flow. Further holds:
oF B Ode B oF B Oe

9V 91/’ T 0S  0s

de oh
Cy = <8_T)V and C, = (6_T>p

with h = H/m the enthalpy per unit of mass.

p:

SO
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From this one can derive thdavier-Stokeequations for an incompressible, viscous and heat-conducting
medium:

divi = 0
ov R R . 2.
05+ o(- V)7 = g —gradp+nV=i
ar ) ,
QCE*FQC(U'V)T = kV*T+27D:D

with C the thermal heat capacity. The forgeon an object within a flow, when viscous effects are limited to
the boundary layer, can be obtained using the momentum law. If a sutfaoerounds the object outside the
boundary layer holds:

Feo #[pﬁ + oi(5- 7 )]d2A

9.3 Bernoulli's equations
Starting with the momentum equation one can find for a non-viscous medium for stationary flows, with
(v - grad)v = grad(v?) + (rot¥) x ¥

and the potential equatigh= —grad(gh) that:
d .
%vQ +gh+ / P _ constant along a streamline
0

For compressible flows hold%v2 + gh + p/o =constant along a line of flow. If also holds ot 0 and
the entropy is equal on each streamline hdjd3 + gh + [ dp/o =constant everywhere. For incompressible
flows this becomes%v2 + gh + p/ o =constant everywhere. For ideal gases with constgrandCy, holds,
with v = C,/Cy:

2
1,2 T P _ 1.2 ¢

5 - =3 = constant
LA e Sl L v

With a velocity potential defined by = grad¢ holds for instationary flows:
9¢

7)
o 4 %1;2 +gh+ / ?p = constant everywhere

9.4 Characterising of flows by dimensionless numbers

The advantage of dimensionless numbers is that they make model experiments possible: one has to make
the dimensionless numbers which are important for the specific experiment equal for both model and the
real situation. One can also deduce functional equalities without solving the differential equations. Some
dimensionless numbers are given by:

L 2
Strouhal: Sr = vk Froude: Fr = v Mach: Ma = ¢

v gL c

. , L L

Fourierr Fo— —  Péclet: Pe— -— Reynolds: Re = il

wL? a v

v La V2
Prandtl: Pr= — Nusselt: Nu = —  Eckert: Ec =

a K cAT

Here,v = 1/ is thekinematic viscosity is the speed of sound atidis a characteristic length of the system.
« follows from the equation for heat transpefl, T = o AT anda = /gc is the thermal diffusion coefficient.

These numbers can be interpreted as follows:

e Re: (stationary inertial forces)/(viscous forces)
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e Sr: (non-stationary inertial forces)/(stationary inertial forces)
e Fr: (stationary inertial forces)/(gravity)

e Fo: (heat conductance)/(non-stationary change in enthalpy)
e Pe: (convective heat transport)/(heat conductance)

e Ec: (viscous dissipation)/(convective heat transport)

e Ma: (speed of sound)/(velocity): objects moving faster than approximately Ma = 0,8 produce shock-
waves which propagate with an andlewith the velocity of the object. For this angle holds Ma
1/ arctan(6).

e Prand Nu are related to specific materials.

Now, the dimensionless Navier-Stokes equation becomesithz/L, v/ = #/V, grad = Lgrad,V’? =
L2V? andt’ = tw o5 I
a:)g/ + (@ V)7 = —gradp + o 4~

Sr Fr Re

9.5 Tube flows

For tube flows holds: they are laminar if Re2300 with dimension of length the diameter of the tube, and
turbulent if Re is larger. For an incompressible laminar flow through a straight, circular tube holds for the
velocity profile:

_ 1ldp, ., 9
o) = g (=)
R
T dp
For the volume flow holdsdy = [ v(r)27rdr = _8_@1%

0
Theentrance lengttl, is given by:

1. 500 < Rep < 2300: L./2R = 0.056Rep

2. Re > 2300: Lo/2R ~ 50

ARan/m dp
3 dx

For flows at a small Re holds§7p = nV?2% and dif = 0. For the total force on a sphere with radiisn a
flow then holds:F' = 67nRv. For large Re holds for the force on a surfateF' = %CWAng.

For gas transport at low pressures (Knudsen-gas) hdlgds=

9.6 Potential theory

ThecirculationT" is defined asI" = j{(ﬁ- é)ds = //(rotf)’) SAd?A = //(Jﬁ -i)d*A

For non viscous media, jf = p(o) and all forces are conservative, Kelvin's theorem can be derived:

dr
dt
For rotationless flows a velocity potenti@l= grad¢ can be introduced. In the incompressible case follows

from conservation of masg2¢ = 0. For a 2-dimensional flow a flow functian(z, y) can be defined: with
® 4 5 the amount of liquid flowing through a curgebetween the points A and B:

B
@A:/ﬁﬁ =
A

=0

(vady — vydx)

b\m
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and the definitions, = 0v/dy, v, = —0¢/Jz holds:® 4p = ¢¥(B) — ¢¥(A). In general holds:

0 v _

0x2  Oy? Wz

In polar coordinates holds:
_loy _o¢ 0¥ _10¢
o0 "o 0T o T roe

For source flows with powe® in (z,y) = (0,0) holds:¢ = 2Q In(r) so thatv, = Q/27r, vg = 0.
v

For a dipole of strengtt) in 2 = a and strength-Q in z = —a follows from superpositionp = —Qazx /271>
whereQa is the dipole strength. For a vortex holds= TI'0 /2.

If an object is surrounded by an uniform main flow with= ve,, and such a large Re that viscous effects are
limited to the boundary layer holdg€, = 0 andF, = —pI'v. The statement that, = 0 is d’Alembert’s
paradox and originates from the neglection of viscous effects. Thg /i also created by becausé’ # 0

due to viscous effects. Henxe rotating bodies also create a force perpendicular to their direction of motion: the
Magnus effect

9.7 Boundary layers

9.7.1 Flow boundary layers

If for the thickness of the boundary layer holds L holds:d ~ L/+/Re. With v, the velocity of the main
flow it follows for the velocityv, L the surfacew,L ~ dv.. Blasius’ equation for the boundary layer is,
with v, /v = f(y/9): 2f" + ff" = 0 with boundary conditiong(0) = f/(0) = 0, f’(c0) = 1. From this
follows: Cy = 0.664 Re; /2.

d. d
The momentum theorem of Von Karman for the boundary Iayec¥l—+s(:z9v2) + 5*vd—v S
€T x 0

where the displacement thicknes® and the momentum thicknegs? are given by:

I? = /(’U — V) dy , §Fv = /(’U —vg)dy and 1o = —7 %Uw
Yy

0 0

y=0

1291
52

The boundary layer is released from the surfac{e%ﬂi) = 0. Thisis eqUiVa|e”tWich_p = :
Yy i

y=0

9.7.2 Temperature boundary layers

If the thickness of the temperature boundary layer L holds: 1. IfPr < 1: §/6r =~ /Pr.
2.1fPr>>1: 6 /67 ~ V/Pr.

9.8 Heat conductance
For non-stationairy heat conductance in one dimension without flow holds:

oT Kk O°T

ot oc 022
where® is a source term. I = 0 the solutions for harmonic oscillationsat= 0 are:

T—-Ts - (x) *(t :C)
T T = exp D cos |w D
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with D = /2k/wpc. At z = wD the temperature variation is in anti-phase with the surface. The one-

dimensional solutiona =0 is
100 = 5o (- 1)
r,t) = ——exp | ——
2vrat P 4at

This is mathematical equivalent to the diffusion problem:

on
— =DV’n+P-A
5 Vn +

whereP is the production of andl the discharge of particles. The flow density- —DVn.

9.9 Turbulence

The time scale of turbulent velocity variationsis of the order of:r; = 7v/Re/Ma? with 7 the molecular
time scale. For the velocity of the particles hold$t) = (v) + v'(¢) with (v/(¢)) = 0. The Navier-Stokes
equation now becomes:

—a§:> +((7) - V) (7) = _—V;m UV (T + —dWQSR
whereSg;; = —o (viv;) is the turbulent stress tensor. Boussinesq's assumption;is= —o (vjv}). Itis

stated that, analogous to Newtonian media: = 20v; (D). Near a boundary holds;; = 0, far away of a
boundary holdsy; =~ vRe.

9.10 Self organization

For a (semi) two-dimensional flow holdgd% = %—C: + J(w,9) = vViw

With J(w, ) the Jacobian. So if = 0, w is conserved. Further, the kinetic enefgyA and the enstrofy
are conserved: with = V x (ki)

E~ (V§)* ~ /E(k,t)dk = constant, V ~ (V2)? ~ /kzé’(k,t)dk = constant
0 0

From this follows that in a two-dimensional flow the energy flux goes towards large validesasfer struc-
tures become larger at the expanse of smaller ones. In three-dimensional flows the situation is just the opposite.
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Quantum physics

10.1 Introduction to quantum physics

10.1.1 Black body radiation
Planck’s law for the energy distribution for the radiation of a black body is:

Smhf3 1 8mhe 1
s a1 0 YO = =5 g

w(f) =

Stefan-Boltzmann’s law for the total power density can be derived from this: AcT*. Wien’s law for the
maximum can also be derived from thiBA,,.x = kw.

10.1.2 The Compton effect

For the wavelength of scattered light, if light is considered to exist of particles, can be derived:

h
N=X+—(1—-cosh) =X+ Ac(1l — cosb)
me

10.1.3 Electron diffraction

Diffraction of electrons at a crystal can be explained by assuming that particles have a wave character with
wavelength\ = h/p. This wavelength is called the Broglie-wavelength.

10.2 Wave functions

The wave character of particles is described by a wavefunetiofhis wavefunction can be described in
normal or momentum space. Both definitions are each others Fourier transform:

O(k,t) = %/‘I’(m,t}e*ikxdaz and U(x,t) = %/‘I)(k,t)e“”dk

These waves define a particle with group veloeity= p/m and energyy = hw.

The wavefunction can be interpreted as a measure for the probabildyfind a particle somewhere (Born):
P = |[¢|2d®V. The expectation valugf) of a quantityf of a system is given by:

o= [[[ wrvev o= [ff o reey,

This is also written agf(¢t)) = (®|f|®). The normalizing condition for wavefunctions follows from this:
(®[®) = (¥|¥) = 1.
10.3 Operators in quantum physics

In quantum mechanics, classical quantities are translated into operators. These operators are hermitian because
their eigenvalues must be real:

/ 1 Ad®V = / Ay ) d*V

45
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Whenu,, is the eigenfunction of the eigenvalue equatibh = oV for eigenvalue:,,, ¥ can be expanded into
a basis of eigenfunction® = 5" ¢, u,. If this basis is taken orthonormal, then follows for the coefficients:

cn = (uy| ). If the system is in a state describedbythe chance to find eigenvalug when measuring! is
given by|c,|? in the discrete part of the spectrum gng|?da in the continuous part of the spectrum between
a anda + da. Thematrix element4,; is given by: A;; = (u;|A|u;). Becausd AB);; = (u;|AB|u;) =
(Uil A" Jun) (un|Bluj) holds:y fuy,) (uy,| = 1.

The time-dependence of an operator is given by (Heisenberg):
dA  0A  [A H]

dt ot ih
with [A, B] = AB — BA thecommutatorof A and B. For hermitian operators the commutator is always
complex. If[A4, B] = 0, the operatorsl and B have a common set of eigenfunctions. By applying thig,to
andz follows (Ehrenfest)md? (z), /dt* = — (dU(z)/dz).

The first order approximatiof¥'(z)), ~ F((z)), with F' = —dU/dx represents the classical equation.

Before the addition of quantummechanical operators which are a product of other operators, they should be
made symmetrical: a classical produtB becomes; (AB + BA).

10.4 The uncertainty principle

If the uncertaintyA A in A is defined as(AA)? = ([ Ay, — (A) |20) = (A%) — (4)? it follows:
AA-AB = 5[ (Yl[A, Bllv) |
From this follows:AE - At > 1h, and becausf, p,] = if holds: Ap, - Az > 1h, andAL, - AL, > IhL..

10.5 The Schbdinger equation

The momentum operator is given by,, = —ihV. The position operator isz,, = ihV,. The energy
operator is given byE,, = ih0/0t. The Hamiltonian of a particle with mass, potential energy/ and total
energyFE is given by: H = p?/2m + U. From Hv = E) then follows theSchibdinger equation

n?_, L Oy
—o VA +UY = B =ih-

The linear combination of the solutions of this equation give the general solution. In one dimension it is:

Y(z,t) = <Z+/dE) c(E)up(x)exp (—%)

The current density is given by:J = %(va — VYY)

The following conservation law holdsé:‘Pé%t) = —VJ(z,t)

10.6 Parity

The parity operator in one dimension is given®By (z) = «(—xz). If the wavefunction is split in even and
odd functions, it can be expanded into eigenfunctiorB8:of

(@) = 3(0(@) + Y(-2)) + 3 (@) — ¥(-2)
even: ’lﬂ+ odd: Y~

[P, H] = 0. The functiong)™ = (1 + P)y(z,t) andy~ = 3(1 — P)y(x,t) both satisfy the Scladinger
equation. Hence, parity is a conserved quantity.
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10.7 The tunnel effect

The wavefunction of a particle in amo high potential step fromxr = 0 to z = a is given byy(z) =
a~1/?sin(kx). The energylevels are given &, = n*h?/8a?m.

If the wavefunction with energyl” meets a potential well ofl, > W the wavefunction will, unlike the
classical case, be non-zero within the potential well. If 1, 2 and 3 are the areas in front, within and behind the
potential well, holds:

,(/}1 _ Aeikm +Befik:v , 1/)2 _ Ceik'z +Defik'z , l/}d _ Aleik:v
with k2 = 2m(W — W) /h? andk? = 2mW. Using the boundary conditions requiring continuity:=
continuous an@vy /0x =continuous att = 0 andxz = a givesB, C andD and A’ expressed iMd. The
amplitudeT of the transmitted wave is defined @y = |A’|?/|A]>. If W > W, and2a = n)\ = 2mn /K
holds:T = 1.
10.8 The harmonic oscillator

For a harmonic oscillator holdé! = 1bx? andw3 = b/m. The HamiltonianH is then given by:

H= L + Lmw?2? = Lhw + wATA
m

9 2 )
with ) )
p p
A= /imwz + and AT = /imwr —
2 V2mw 2 V2mw

A # Atis non hermitian.[A, A'] = h and[A, H] = hwA. Ais a so calledaising ladder operator At a
lowering ladder operatarH Aur, = (F — hw)Aug. There is an eigenfunctiam, for which holds: Aug = 0.
The energy in this ground statejw: the zero point energy. For the normalized eigenfunctions follows:

1 AT\" w wWith L [mw . mwax?
Uy, = — | —= — — ex —
\/H \/ﬁ 0 0 wh P 2h

with E,, = (% + n)hw.

10.9 Angular momentum

For the angular momentum operatdr&olds:|[L., L?] = [L,, H| = [L?, H] = 0. However, cyclically holds:
[Ls, Ly = ihL,. Not all components of can be known at the same time with arbitrary accuracy. IFor

holds: 5 5 5
L.=—ih— = —ih | 2— — y—
! de ! (xay y&':c)
The ladder operators,. are defined byL, = L, +iL,. Now holds:L? = L{L_ + L? — hL,. Further,

; 0 0
_ +ip .
Ly =he (:I: 20 + icot(6) _&p)

From[L, L.] = —hL, follows: L,(L+Y}y) = (m + 1)A(L4+Yim)-
From[L_, L.] = hL_ follows: L.(L_Y},) = (m — 1)A(L_Yi).
From[L?, L] = 0 follows: L?(L+Yi,) = 1(1 + 1R (L+Yim).

Because., andL, are hermitian (this implies!, = L) and|L+Y,,|2 > 0 follows: I(l + 1) — m? —m >
0 = —I < m <. Further follows that has to be integral or half-integral. Half-odd integral values give no
unigue solution) and are therefore dismissed.
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10.10 Spin

For the spin operators are defined by their commutation relatjopss,| = ih.S.. Because the spin operators
do not act in the physical spa¢e, y, z) the uniqueness of the wavefunction is not a criterium here: also half
odd-integer values are allowed for the spin. Becdilis&€] = 0 spin and angular momentum operators do not

have a common set of eigenfunctions. The spin operators are givﬁrﬂaghé, with

() Aty A (s )

The eigenstates &, are calledspinors x = a4 x+ + a—x—, wherex; = (1,0) represents the state with
spinup 6. = h) andy_ = (0,1) represents the state with spin dows) (= —17). Then the probability
to find spin up after a measurement is givendy|? and the chance to find spin down is given|by |?. Of
course hold$a |2 + |a_|? = 1.

Qul
Qul
Qul

The electron will have an intrinsic magnetic dipole momahtdue to its spin, given b}/ = —egsS/2m,
with g = 2(1 + «/27 + - - -) the gyromagnetic ratio. In the presence of an external magnetic field this gives
a potential energyy/ = —M - B.The Schodinger equation then becomes (becaiggdz; = 0):

L Ox(t)  egsh_, =
ih 5t A 7 - Bx(t)

with &@ = (¢,,3,, ). If B = Be. there are two eigenvalues for this probleg: for E = +egshB/4m =
+hw. So the general solution is given lyy= (ae~%*, be“*). From this can be derivedS,) = 17 cos(2wt)
and(S,) = 1hsin(2wt). Thus the spin precesses about thexis with frequencw. This causes the normal
Zeeman splitting of spectral lines.

The potential operator for two particles with Spl'tr%ﬁ is given by:

V() = Vi) + 251 S)Valr) = Vilr) + 31a0)IS(S +1) — 3

This makes it possible for two states to exiSt= 1 (triplet) or.S = 0 (Singlet).

10.11 The Dirac formalism

If the operators fop and E are substituted in the relativistic equatii = m2c* + p?c?, theKlein-Gordon
equation is found:

1 82 mic 0 m2c? 0 mac?
2 L 07 Mt 0 mpet o 0
v {” oz BP } {7“ dr, R }

where the Dirac matriceg are given by:yxy, + .7 = 2d,,. From this it can be derived that theare
hermitiand x 4 matrices given by:

(0 —ioy (1 0

With this, the Dirac equation becomes:

0w
b Oy K2

>¢(f,t)o

wherey(z) = (Y1 (x), 2(x), ¥3(x), ¥a(x)) is a spinor.
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10.12 Atomic physics
10.12.1 Solutions

The solutions of the Schdinger equation in spherical coordinates if the potential energy is a function of
alone can be written agi(r, 0, ) = Ry (r)Yi,m, (0, ¢) Xm. , With

Yim = I Py (cos e

V2T
For an atom or ion with one electron holdg;,,, (p) = Ci,e ?/2p L2 H  (p)

with p = 2rZ/nag with ag = goh? /mm.e?. TheL{ are the associated Laguere functions andiffeare the
associated Legendre polynomials:

—a;m—m dn_m ( —x TL)

dlm!| (—1)™mn!
(n —m)! dxn—m *

F"M(@) = (1 -2 (@ - )] L) =

n—1
The parity of these solutions {s-1)!. The functions ar@ >~ (21 + 1) = 2n?-folded degenerated.
=0

10.12.2 Eigenvalue equations

The eigenvalue equations for an atom or ion with with one electron are:

[ Equation | Eigenvalue | Range |
Hoptp = Evp E, = pe*Z?/8¢2h?n? | n > 1
LoopYim = L:Yim | Ly = myh =1 <m <l
L2 Yim = LY | L2 =11+ 1)R° l<n
SzopX = S2X S, =msh my = +1
S2x = 52 5% = s(s + 1)h? s=12

10.12.3 Spin-orbit interaction

The total momentum is given by = L + M. The total magnetic dipole moment of an electron is then
M = My + Ms = —(e/2me)(L + gsS) wheregs = 2.0023 is the gyromagnetic ratio of the electron.
Further holds:J2 = L2 + S2 + 2L - § = L2 + 52 + 2L.S. + L, S_ + L_S,. J has quantum numbeys
with possible valueg = [ + % with 25 + 1 possiblez-componentsitt; € {—3, ..,0, .., 5}). If the interaction
energy betweey andL is small it can be stated thak = E,, + Esy, = FE,, + aS - L. It can then be derived

that:
|E,| Z2%a?

=" 1
Renl(l+1)(1+ 3)
After a relativistic correction this becomes:

E,|Z%a? 1
b gy B2 (3 1)
n n  j+3

Thefine structurein atomic spectra arises from this. Wiglh = 2 follows for the average magnetic moment:
M., = —(e/2m.)ghJ, whereg is the Land-factor:

S-J G+ +s(s+1)—1(1+1)
J? 2j(j +1)

For atoms with more than one electron the following limiting situations occur:




50 Physics Formulary by ir. J.C.A. Wevers

1. L — S coupling: for small atoms the electrostatic interaction is dominant and the state can be char-
acterized byL, S, Jymy. J € {|[L—-S|,...L+S —1,L+ S}andm,; € {-J,....J — 1,J}. The
spectroscopic notation for this interactionis:-! L ;. 25 + 1 is the multiplicity of a multiplet.

2. j — j coupling: for larger atoms the electrostatic interaction is smaller thaid the; interaction of
an electron. The state is characterizedjby.j,., J, m; where only thej; of the not completely filled
subshells are to be taken into account.

The energy difference for larger atoms when placed in a magnetic fiellis= gugm B whereg is the
Lancg factor. For a transition between two singlet states the line splits in 3 pari&pigr= —1,0 + 1. This
results in the normal Zeeman effect. At higtethe line splits up in more parts: the anomalous Zeeman effect.

Interaction with the spin of the nucleus gives the hyperfine structure.

10.12.4 Selection rules

For the dipole transition matrix elements follows; ~ |(lamg|E - 7|lymy)|. Conservation of angular mo-
mentum demands that for the transition of an electron holdsthat +1.

For an atom wheré — S coupling is dominant further hold\,S = 0 (but not strict), AL = 0,+1, AJ =
0, +1 except forJ = 0 — J = 0 transitionsAm ; = 0, =1, but Am ; = 0 is forbidden ifAJ = 0.

For an atom wherg — j coupling is dominant further holds: for the jumping electron holds, exaépt +1,
also: Aj = 0,+1, and for all other electronsA; = 0. For the total atom holdsAJ = 0,=+1 but no
J =0 — J = 0transitions and\m ; = 0, £1, butAm ; = 0 is forbidden ifAJ = 0.

10.13 Interaction with electromagnetic fields
The Hamiltonian of an electron in an electromagnetic field is given by:

1

S T2 R ST
H=—{p+ecA) —eV=—-V +—B-L+2—A —eV
W

21 2u
wherey is the reduced mass of the system. The termd? can usually be neglected, except for very strong
fields or macroscopic motions. F& = Be, it is given bye? B%(z? + y?)/8u.

When a gauge transformatiotf = A — Vf, V' =V + 0f/0tis applied to the potentials the wavefunction
is also transformed according td = e*?¢//" with ge the charge of the particle. Becauge= f(z, 1), this

is called alocal gauge transformation, in contrast witlgbobal gauge transformation which can always be
applied.

10.14 Perturbation theory

10.14.1 Time-independent perturbation theory

To solve the equatioffly + AH1 )y, = E,1, one has to find the eigenfunctionslBf= Hy+ \H;. Suppose
that¢,, is a complete set of eigenfunctions of the non-perturbed HamiltoHianHy¢,, = E°$,. Because
¢, is a complete set holds:

k#n

Whenc,;, andE, are being expanded infa c,; = Ac,f}k) + A%f,g +e-

E,=ES+ AEY + NEP 4.
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and this is put into the Schdinger equation the result g = (¢n|H1|dn) and
N (Pm|Hi|dn)

= ~————"if m # n. The second-order correction of the energy is then given by:

nm EO EO
H " AH | ¢,
EP =) o [(Gk | Hr|én) |° ¢k| 1|¢L ’ . So to first order holdsp,, = ¢, + Z (z)k' 1|¢L
k#n k#n

In case the levels are degenerated the above does not hold. In that case an orthonormal set eigenfynctions
is chosen for each level, so that(¢.,,;|¢n;) = 6mndi;. NOW is expanded as:

Zam +AD LS B+
E.i=E% + )\Efi) is approximated by, := EY. Substitution in the Scldinger equation and taking dot

product withe,,; gives:>" a; (¢nj|H1|dni) = E,(Ll)aj. Normalization requires th3t |a;|? = 1.

10.14.2 Time-dependent perturbation theory

0y (t)
ot

and the expansion(t) Z cn(t) exp <

From the Schodinger equationh = (Ho + AV ()¥(t)

= >¢)nW|th cn(t) —5nk+>\cg)(t)+~~

t

follows: ¢ () = %/wnlv(t')léw exp (w) dt’
0

10.15 N-particle systems

10.15.1 General

Identical particles are indistinguishable. For the total wavefunction of a system of identical indistinguishable
particles holds:

1. Particles with a half-odd integer spin (Fermiong),., must be antisymmetric w.r.t. interchange of
the coordinates (spatial and spin) of each pair of particles. The Pauli principle results from this: two
Fermions cannot exist in an identical state becausethgn = 0.

2. Particles with an integer spin (Bosong),,1 must be symmetric w.r.t. interchange of the coordinates
(spatial and spin) of each pair of particles.

For a system of two electrons there are 2 possibilities for the spatial wavefunction. Méreshh are the
guantum numbers of electron 1 and 2 holds:

¥s(1,2) = Ya(L)n(2) + 1a(2)ths(1) , Pa(1,2) = Ya(1)¥s(2) — tha(2)h(1)

Because the particles do not approach each other closely the repulsion engfginahis state is smaller.
The following spin wavefunctions are possible:

Xa = 3V2x+(1)x-(2) = x+(@x-(1)] ms =0

X+(1)X+(2) ms = +1
xs =14 V20 (Mx—(2) + x+(2)x-(1)] ms=0
x-()x-(2 ) ms = —1

Because the total wavefunction must be antisymmetric it follaWs;ar = ¥sxa OF Yiotal = YA XS-
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For N particles the symmetric spatial function is given by:

Ys(1,..., N) = ¢(all permutations of .. N)

The antisymmetric wavefunction is given by the determinantl, ..., NV)

1 .
= WWE(JH

10.15.2 Molecules

The wavefunctions of atomandb are¢, andg,. If the 2 atoms approach each other there are two possibilities:
the total wavefunction approaches the bonding function with lower total engsgy- %\/5(% + ¢p) Or
approaches the anti-bonding function with higher energy = %\/ﬁ(qﬁa — ¢yp). If a molecular-orbital is
symmetric w.r.t. the connecting axis, like a combination of two s-orbitals it is calledwbital, otherwise a
m-orbital, like the combination of two p-orbitals along two axes.

(Y[ Hp)
W)
The energy calculated with this method is alwayjgherthan the real energy if is only an approximation for
the solutions off¢) = E1. Also, if there are more functions to be chosen, the function which gives the lowest
energy is the best approximation. Applying this to the functios >_ ¢;¢; one finds:(H,;; — ES;;)c; = 0.
This equation has only solutions if tisecular determinantd;; — ES;;| = 0. Here,H,; = (¢;|H|¢;) and
Sij = (¢il¢;). «; := Hy; is the Coulomb integral andl;; := H;; the exchange integrab;; = 1 andS;; is
the overlap integral.

The energy of a system i =

The first approximation in the molecular-orbital theory is to place both electrons of a chemical bond in the
bonding orbital: ¢(1,2) = p(1)y¥p(2). This results in a large electron density between the nuclei and
therefore a repulsion. A better approximationijgl, 2) = C1¢p(1)Yp(2) + Catoas(1)Pap(2), withC; =1

andC; = 0.6.

In some atoms, such as C, it is energetical more suitable to form orbitals which are a linear combination of the
s, p and d states. There are three ways of hybridization in C:

1. SP-hybridization)s, = %\/i(wgs + 19, ). There are 2 hybrid orbitals which are placed on one line
under180°. Further the 2p and 2p, orbitals remain.

2. SP hybridization:wspz = ’lpgs/\/g-‘r Cl’lﬂgpz + nggpy, Where(cl, CQ) S {(\/2/3, O), (—1/\/6, 1/\/5)
,(=1/4/6,—1/+/2)}. The 3 SP orbitals lay in one plane, with symmetry axes which are at an angle of
120°.

3. SP hybridization:s,s = 3 (1o £ 1b2p_ + Yap, £, ). The 4 SP orbitals form a tetraheder with the
symmetry axes at an angle t#9°28’.

10.16 Quantum statistics

If a system exists in a state in which one has not the disposal of the maximal amount of information about the
system, it can be described bylansity matrix. If the probability that the system is in stateis given bya;,
one can write for the expectation valuef A: (a) = > r; (;|A|;).

9

If ¢ is expanded into an orthonormal baéis, } as: ¢y = 3 c,(f)@, holds:
k

(4) = Z(Ap)kk = Tr(Ap)

k

wherep;, = cjc. pis hermitian, with T¢p) = 1. Further holds = ) r;|¢;)(+;|. The probability to find
eigenvaluez,, when measuringl is given byp,,, if one uses a basis of eigenvectorsdfor {¢;}. For the
time-dependence holds (in the Sotiriger image operators are not explicitly time-dependent):

. dp
L _H
ih— = [H,p]
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For a macroscopic system in equilibrium holds, p] = 0. If all quantumstates with the same energy are
equally probableP; = P(E;), one can obtain the distribution:

o En/kT

P (E) = ppn = — with the state sumz = Ze*En/kT

n

The thermodynamic quantities are related to these definitions as follbws: —kT'In(Z), U = (H) =

an n = fakiTln( ), S = —kZP In(P,). For a mixed state af/ orthonormal quantum states with

probab|I|ty1/MfoIIowsS kEln(M )

The distribution function for the internal states for a system in thermal equilibrium is the most probable func-
tion. This function can be found by taking the maximum of the function which gives the number of states with
Stirling’s equationin(n!) = nln(n) — n, and the conditiony_ n, = N and>_ n, W, = W. For identical,

k k
indistinguishable particles which obey the Pauli exclusion principle the possible number of states is given by:
|

gk-
P=T]—2
1;[ ! (ge — n)!

This results in théd=ermi-Dirac statistics For indistinguishable particles whiato notobey the exclusion
principle the possible number of states is given by:

_ 9"
P_N!Hn—k!
k

This results in theBose-Einstein statisticsSo the distribution functions which explain how particles are
distributed over the different one-particle stateshich are eacly;-fold degenerate depend on the spin of the
particles. They are given by:

9k
exp((Ey — p)/kT) + 1

1. Fermi-Dirac statistics: integer spiny € {0,1}, n =
with In(Z,) = 3 g In[L + exp((E; — p)/KT)].

N[z

. . - . . N
2. Bose-Einstein statistics: half odd-integer spip.€ IN, n, = — 9k

Zy oxp((Br — p)/RT) 1
with In(Z,) = — > gx In[1 — exp((E; — p)/kT)].

Here,Z, is the large-canonical state sum gnthe chemical potential. It is found by demandngn, =
and for |t holds: hm 1 = Ew, the Fermi-energylV is the total number of particles. The Maxwell- BoItzmann

distribution can be derlved from this in the lindit, — p > kT
N E . E
Mk = — exp (_k—;’) with Z = ng exp (—ﬁ)

With the Fermi-energy, the Fermi-Dirac and Bose-Einstein statistics can be written as:

9k
xp((Ex — Er)/kT) + 1

9k
xp((Ex — Ep)/kT) — 1"

1. Fermi-Dirac statisticsa;, =
€

2. Bose-Einstein statistics;, =
€




Chapter 11

Plasma physics

11.1 Introduction
Ne
Ne + No

wheren, is the electron density and, the density of the neutrals. If a plasma contains also negative charged
ionsa is not well defined.

Thedegree of ionizatiom of a plasma is defined by: =

The probability that a test particle collides with another is giver By= nodx whereo is thecross section

The collision frequency. = 1/7. = nov. Themean free patlis given by, = 1/no. Therate coefficient

K is defined byK = (ov). The number of collisions per unit of time and volume between particles of kind 1
and 2 is given byl1n2 <O”U> = Knins.

The potential of an electron is given by:

—e T . E()kTeﬂ 6()]17Te
= - with = ~
Vi) dmegr exPp < )\D) th Ao e2(nTy + niTy) Nee2

because charge is shielded in a plasma. Hgrejs the Debye length For distances< A\p the plasma
cannot be assumed to be quasi-neutral. Deviations of charge neutrality by thermic motion are compensated by
oscillations with frequency

nee?

Wpe =
P Me€o

The distance of closest approximation when two equal charged particles collide for a deviatip® isf
2by = €%/(4megimu?). A “neat” plasma is defined as a plasma for which holgisx ne'® < Ap < L,.

HereL, := |n./Vne| is the gradient length of the plasma.

11.2 Transport

Relaxation times are defined as= 1/v.. Starting witho,, = 47b% In(Ac) and with 2mv? = kT it can be

found that:
dmedmv® Sﬂwsg\/ﬁ(kT)WQ
T = =
netIn(Ac) netIn(Ac)

For momentum transfer between electrons and ions holds for a Maxwellian velocity distribution:
_ 6m\/3e2\/ma(kT:)3/? ~ - 6m/3e2\ /i (kT;)%/?
Tee = neet In(Ag) ety T niet In(Ag)
The energy relaxation times for identical particles are equal to the momentum relaxation times. Because for

e-i collisions the energy transfer is onty 2m,./m; this is a slow process. Approximately holds; : 7c; :
Tie : TE =1:1:y/mi/me : mi/me.

The relaxation for e-o interaction is much more complicated. Far 10 eV holds approximatelys,, =
10~ 705 2/®, for lower energies this can be a factor 10 lower.

The resistivityn = E/.J of a plasma is given by:

Nee? B e?\/me In(Ac)
Melei 6’/T\/§€(2)(kTe)3/2

’[7:

54
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The diffusion coefficientD is defined by means of the fluxX by T = nvgag = —DVn. The equation
of continuity isd;n + V(nvaig) = 0 = dn = DV?n. One finds thatD = %)\vv. A rough estimate gives
™ =L,/D = Lf,rc/)\i. For magnetized plasmals, must be replaced with the cyclotron radius. In electrical
fields also holds/ = nepE = e(nepie + nipi) E with i = e/mu, the mobility of the particles. The Einstein
ratio is:

Because a plasma is electrically neutral electrons and ions are strongly coupled and they don't diffuse inde-
pendent. Theoefficient of ambipolar diffusio®.,;, is defined byF F = F = —DampVne ;. From this

follows that

kTe/e — KTije  kTou

Upe =1/ T e
In an external magnetic field, particles will move in spiral orbits witltyclotron radiusp = muv/eBy

and with cyclotron frequenc§2 = Bge/m. The helical orbit is perturbed by collisions. A plasma is called
magnetizedf A, > p. ;. So the electrons are magnetized if

Damb =

pe  /mee’neIn(Ac)
Xee  6m\/3e2(KT.)3/2 B,

Magnetization of only the electrons is sufficient to confine the plasma reasonable because they are coupled
to the ions by charge neutrality. In case of magnetic confinement hwlgs= J x B. Combined with the

two stationary Maxwell equations for the-field these form the ideal magneto-hydrodynamic equations. For

a uniformB-field holds:p = nkT = B?/2uy.

If both magnetic and electric fields are present electrons and ions will move in the same direcfibn: If

E,é, + E.¢. andB = B.é. the E x B drift results in a velocityi = (E x B)/B? and the velocity in the
r, o planeisr(r, o, t) = @ + p(t).

11.3 Elastic collisions

11.3.1 General

The scattering angle of a particle in interaction with another
particle, as shown in the figure at the right is:

Particles with an impact parameter betwéeand b + db,
moving through a ring withlo = 27bdb leave the scattering
area at a solid angléQ = 2zsin(x)dx. The differential
cross sectiofis then defined as:

do | _
aQ|

b 0b

sin(x) Ox

1(Q) =

For a potential energy/ (r) = kr—™ follows: I(Q,v) ~ v=4/",

For low energiesQ(1 eV), o has aRamsauer minimunit arises from the interference of matter waves behind
the object.z(£2) for anglesd < x < A/4 is larger than the classical value.
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11.3.2 The Coulomb interaction

For the Coulomb interaction hold8by = q1g2/2meomuvd, SOW (r) = 2bg/r. This givesh = by cot(%x) and

b ob b2

sin(x) Ox - 4sin2(%x)

Q=
Because the influence of a particle vanishes at A\p holds: 0 = w(\} — b2). Becauselp = d(mv) =
mup(1 — cos x) a cross section related to momentum transfgiis given by:

In(v?)
!

Om = /(1 — cos X)I()dQ = 47b3 In < = 47bZ1In <A—D> = 47b2 In(Ac) ~

1
Sil’l( %Xmin) ) bO

whereln(A) is theCoulomb-logarithmFor this quantity holdsAc = A\p /by = 9n(Ap).

11.3.3 The induced dipole interaction

The induced dipole interaction, wifh= oE, gives a potential” and an energy¥’ in a dipole field given by:

2

D ey le|p oe
Vir) = L W) = — -
(r) 4deqgr? (r) 8megr? 2(4meg)2rt
o0
. 22 d

with b, = ¢ % holds:x = 7 — 2b/ TQ =
(4’/T€()) vao 2, /1 b + ba

© r2 " 4rd

If b > b, the charge would hit the atom. Repulsing nuclear forces prevent this to happen. If the scattering
angle is a lot time@r it is called capture. The cross section for capiusg, = b2 is called the Langevin
limit, and is a lowest estimate for the total cross section.

11.3.4 The centre of mass system

If collisions of two particles with masses,; andms, which scatter in the centre of mass system by an angle
are compared with the scattering under an afidtethe laboratory system holds:

ma sin(y)

tan(f) = ———=——
an(6) my + ma cos(x)

The energy losa\ F of the incoming particle is given by:

AE  imgvd 2mims
— = = 1 — cos
) %mlvf (m1 +m2)2( (X))

11.3.5 Scattering of light

Scattering of light by free electrons is called Thomson scattering. The scattering is free from collective effects
if kAp < 1. The cross sectiost = 6.65 - 10~2°m? and

% = 2%) sin(%x)

This gives for the scattered energy... ~ nAs/(A\? — \2)? with n the density. If\ > )\, it is called Rayleigh
scattering. Thomson sccattering is a limit of Compton scattering, which is giveth byA = Ac(1 — cos x)
with A\c = h/mc and cannot be used any more if relativistic effects become important.
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11.4 Thermodynamic equilibrium and reversibility

Planck’s radiation law and the Maxwellian velocity distribution hold for a plasma in equilibrium:

8rhv? 1 2mn E
p(v, T)dv = & oxplw JRT) = 1d1/ , N(E,T)dE = W\/ﬁexp (k:_T> dE

“Detailed balancing” means that the number of reactions in one direction equals the number of reactions in the
opposite direction because both processes have equal probability if one corrects for the used phase space. For

the reaction
Z Xforward = Z Xback

forward back

holds in a plasma in equilibriummicroscopicaeversibility:
H ﬁforward = H ﬁback
forward back

If the velocity distribution is Maxwellian, this gives:

P P mkr
Y ge (2mmgkT)3/2

wherey is the statistical weight of the state angy := . For electrons holdg = 2, for excited states usually
holdsg = 2j + 1 = 2n?2.

With this one finds for the Boltzmann balangg, + e~ 2 Xy + e~ + (E1p):

B
n, o gy E, - F,
T kT,

And for the Saha balanc,, + e~ + (E,;) < X{ +2e~:

n_g = EE h exp Lpi
p 97 ge (2rmekTy)3/? kTe

Because the number of particles on the left-hand side and right-hand side of the equation is different, a factor
g/ Ve remains. This factor causes tS8aha-jump

From microscopic reversibility one can derive that for the rate coefficitts ¢, 7') := (ov),,, holds:

9p AEP‘I
K =2k T —Pq
(¢,p,T) 0 (p.q, )eXp< T

11.5 Inelastic collisions

11.5.1 Types of collisions

The kinetic energy can be split in a paftand a parin the centre of mass system. The endrgthe centre of
mass system is available for reactions. This energy is given by

m1m2(1)1 — 02)2
2(m1 + mg)

Some types of inelastic collisions important for plasma physics are:
1. Excitation:A, + e~ Z A, +e”
2. Decay:A; < A, +hf
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lonisation and 3-particles recombinatioxy, + e~ < At + 2e~
radiative recombinatio* +e~ = A, + hf

Stimulated emissio, + hf — A, +2hf

Associative ionisationA** + B = ABT + e~

Penning ionisation: b.We* + Ar = Ar™ + Ne + e~

Charge transfeA* + B2 A + BT

© © N o 0 A~ W

Resonant charge transfer™ + A = A + A+

11.5.2 Cross sections

Collisions between an electron and an atom can be approximated by a collision between an electron and one
of the electrons of that atom. This results in

do wZ2e*

d(AE) ~ (4me)2E(AE)?

7T2264AEq7q+1
(4’/T€())2E(AE)12)[1

Then follows for the transitiop — ¢: p4(E) =

S . . 1 1 1.256F
For ionization from statg holds to a good approximation;, = 47a2 Ry (E_ — E) In ( Eﬁ )
p p

A[l — Bln(E)]?

For resonant charge transfer holds;, = —
g o8 =~ oEe

11.6 Radiation

In equilibrium holds for radiation processes:

npApg + pBpep(v,T) = ngBopp(v,T)

N——"

emission  stimulated emission absorption
Here, A,, is the matrix element of the transitipn— ¢, and is given by:

_ 8m2e?13|rpg |2

A, = -
pa 37”1{:‘()0‘3

with 7, = (V|7 [1)g)

For hydrogenic atoms holdst, = 1.58 - 108Z%p=45, with 4, = 1/7, = 3 A,,. The intensityl of a line is
q

given byI,, = hfA,yn,/47. The Einstein coefficient8 are given by:

CSqu and % — &

P 8rhy3 By 9
A spectral line is broadened by several mechanisms:
1. Because the states have a finite life time. The natural life time of agsigtgven by, = 1/>" A,,.
From the uncertainty relation then follow&:(hv) - 7, = 11, this gives '
L T

- 4mTy, - 47

Av

The natural line width is usuallg than the broadening due to the following two mechanisms:
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2. The Doppler broadening is caused by the thermal motion of the particles:

Q B 2 21n(2)kT;
A ¢ m;

This broadening results in a Gaussian line profile:
k, = ko exp(—[2VIn2(v — vg)/Avp]?), with k the coefficient of absorption or emission.

3. The Stark broadening is caused by the electric field of the electrons:

]

A)\I/Q = |:7C(ne’Te

with for the H3 line: C(ne, T.) ~ 3 - 1044A—3/2cm3,

The natural broadening and the Stark broadening result in a Lorentz profile of a spectral line:
ky, = $koAvy/[(3AvL)? 4+ (v — 11)?]. The total line shape is a convolution of the Gauss- and Lorentz profile
and is called &oigt profile

The number of transitions — ¢ is given byn, B,qp and byn,ny s (gac) = n,(pdv/hv)oa.c wheredv is the
line width. Then follows for the cross section of absorption processes: B, hv/cdv.

The background radiation in a plasma originates from two processes:

1. Free-Bound radiation, originating from radiative recombination. The emission is given by:

C1 zinine hc
o=z [+ ()| enn

with C; = 1.63 - 10~*3 Wm*K'/2sr-! and¢ the Biberman factor

2. Free-free radiation, originating from the acceleration of particles in the EM-field of other particles:

Ch znine he
== - T,
R EACR= eXP( AkTe) Err(N Te)

11.7 The Boltzmann transport equation
Itis assumed that there exists a distribution functtofor the plasma so that

F(Fa ’Ua t) = F’f‘(f: t) : FU(Ua t) = Fl(x7t)F2(yat)F?)(Zat)F4(Ua;at)F5(Uyat)Fﬁ(UZ7t)

dF  OF oF
Thenthe BTEis— = — + V,. - (F& v (F3)=|=—
enthe is— 5 +V, - (FU)+V, - (F@) (at)collrad

Assuming that does not depend ananda; does notdepend an, holdsV.,.-(Fv) = ¢-VF andV,-(Fad) =
a- V,F. This is also true in magnetic fields becadtg/0x; = 0. The velocity is separated in a thermal
velocity 7, and a drift velocity. The total density is given by = [ Fdv and [ ¢Fdv = ni.

The balance equations can be derived by means of the moment method:

1. Mass balance/(BTE)dﬁ = 88—7; + V- (nd) = (%)

—

di
2. Momentum baIance/(BTE)mUdU = mnd—qf +VT +Vp=mn(@)+R

d
3. Energy balance/(BTE)mUQdU = gd_lt) + gpv WH+V-7=Q
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Here,(@) = e/m(E + 1w x B ) is the average acceleration= 1nm (7,27,) the heat flow,
o [mt (o

r ot
pressure.

) dv the source term for energy productioﬁ,is a friction term andp = nkT the

e2(ne + zn;)

A thermodynamic derivation gives for the total pressyre: nkT = » _ p; —
p 24’/T€())\D

For the electrical conductance in a plasma follows from the momentum balanc¢esif w;:

. . JxB
eNe

In a plasma where only elastic e-a collisions are important the equilibrium energy distribution function is the
Druyvesteyn distribution

EN\*? 3me [ E\?
N(E)dE = Cne (E—O> exp [ o (E—O>

with Eg = eEX, = eE/no.

11.8 Collision-radiative models

These models are first-moment equations for excited states. One assumes the Quasi-steady-state solution is
valid, wherev,~1[(On, /0t = 0) A (V - (n,wp) = 0)]. This results in:

Onp>1 B ony oy ony on; o %
(%) =0 G v = () G e v = ()

with solutionsn,, = rn3+rinE = b,n3. Further holds for all collision-dominated levels thag := b, —1 =

bopog With peg = \/Ry/Ep andb < o < 6. For systems in ESP, where only collisional (de)excitation
between levelp andp £ 1 is taken into account holds = 6. Even in plasma’s far from equilibrium the
excited levels will eventually reach ESP, so from a certain level up the level densities can be calculated.

To find the population densities of the lower levels in the stationary case one has to start with a macroscopic
equilibrium:

Number of populating processes of lewel= Number of depopulating processes of level

When this is expanded it becomes:

2
Ne Z NgKgp + ne Z ngKqp + Z NgAgp + iK1y + NeNiQrad =

a<p a>p a>p coll. recomb. rad. recomb
coll. excit. coll. deexcit. rad. deex. to
NeNyp Z Kpg +nenyp Z Kpq+ nyp Z Apg Fnenp Ky,
a<p a>p q<p m
coll. deexcit. coll. excit. rad. deex. from

11.9 Waves in plasma’s

Interaction of electromagnetic waves in plasma’s results in scattering and absorption of energy. For electro-
magnetic waves with complex wave numbbet w(n + ix)/c in one dimension one finds:
E, = Ege "%/ cos|w(t — nx/c)]. The refractive index is given by:

2

_k_c_ “p
n=c—=—=1\/1-—
w v w
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For disturbances in the-direction in a cold, homogeneous, magnetized plasﬁ1a:: Byé. + Beilk==w1) and
n = ng + ne'**~w1) (externalF fields are screened) follows, with the definitions= w,/w andg = Q/w
andw? = w2, + wl,:

1 _iﬁs 0
I - 1-p52 1-p2
J =GdFE ,with &':iaowZai i3s 1 0
s 1-p82 1-82
0 0 1

where the sum is taken over particle specieShe dielectric tensaof, with property:

is given byE = I — g/z'sow.

. L 043 Oﬂ»ﬂs 2
With the definitionss =1 - " —— , D=>) " —* P=1-> a

1—p27 1-p62 7 -
follows:
- S —D 0
E=1 D S 0
0 0 P

The eigenvalues of this hermitian matrix ake= S + D, L = S — D, A3 = P, with eigenvectorg, =
1V2(1,4,0), & = $v2(1,—i,0) andée; = (0,0,1). € is connected with a right rotating field for which
iE,/E, = 1andé) is connected with a left rotating field for whiclt,./ E, = —1. Whenk makes an anglé

with BB one finds:
P(n? - R)(n®> - L)

S(n? — RL/S)(n? — P)
wheren is the refractive index. From this the following solutions can be obtained:

tan?(0) =

A. & = 0: transmission in the z-direction.
1. P=0: E, = E, = 0. This describes a longitudinal linear polarized wave.
2. n? = L: aleft, circular polarized wave.
3. n? = R: aright, circular polarized wave.
B. 8 = = /2: transmission L the B-field.
1. n? = P: the ordinary modeE, = y = 0. This is a transversal linear polarized wave.
2. n2 = RL/S: the extraordinary modeE, /E, = —D/S, an elliptical polarized wave.

Resonance frequenciese frequencies for which? — oo, sovs = 0. For these holdstan(f) = —P/S.
For R — oo this gives the electron cyclotron resonance frequeney €., for L — oo the ion cyclotron
resonance frequency = §2; and forS = 0 holds for the extraordinary mode:

“ mew? ) m2 w? w?

Cut-off frequencieare frequencies for which? = 0, sov; — oc. Forthese holdsP = 0or R =0or L = 0.

In the case that? >> 1 one finds Alf\én waves propagating parallel to the field lines. With the étfvelocity

Q0

VA = ————
2 2
Whe T Wi

follows: n = /1 + ¢/va, @andin case, < ¢ w = kva.
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Solid state physics

12.1 Crystal structure

A lattice is defined by the 3 t@nslation vectais so that the atgmic composition looks the same from each
point7and7” = 7+ T, whereT is a translation vector given b¥{l! = uid; + ugds + ugds with u; € IN. A
lattice can be constructed from primitive cells. As a primitive cell one can take a parallellepiped, with volume

Veetl = |@1 - (@2 X d3)]

Because a lattice has a periodical structure the physical properties which are connected with the lattice have
the same periodicity (neglecting boundary effects):

ne(F+T) = ne(F)

This periodicity is suitable to use Fourier analysi$r’) is expanded as:

with

G is thereciprocal lattice vector If G is written asG = v1b1 + vabs + vsbs ith v; € IN, it follows for the
vectorsh;, cyclically:

Bi — o aitl X aitQ
a; - (Tig1 X Aig2)

The set of@’-vegtorsﬁdetﬁerminesﬁthgdﬁtgen diffractions: a maximum in the reflected radiation occurs if:
Ak = G with Ak = k — k’. So:2k - G = G?. From this follows for parallel lattice planes (Bragg reflection)
that for the maxima holdd sin(0) = nA.

The Brillouin zone is defined as a Wigner-Seitz cell in the reciprocal lattice.

12.2 Crystal binding

A distinction can be made between 4 binding types:
1. Van der Waals bond
2. lon bond
3. Covalent or homopolar bond
4. Metalic bond.

For the ion binding of NaCl the energy per molecule is calculated by:

E = cohesive energy(NaCl) — ionization energy(Na) + electron affinity(Cl)
The interaction in a covalent bond depends on the relative spin orientations of the electrons constituing the
bond. The potential energy for two parallel spins is higher than the potential energy for two antiparallel spins.
Furthermore the potential energy for two parallel spins has sometimes no minimum. In that case binding is not
possible.
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12.3 Crystal vibrations

12.3.1 A lattice with one type of atoms

In this model for crystal vibrations only nearest-neighbour interactions are taken into account. The force on
atoms with massM can then be written as:

dPug
FS = MW = C(u5+1 - ’U,S) + C(u5,1 - us)

Assuming that all solutions have the same time-dependenge-iwt) this results in:
—~Mw?uy = Clugiy + us_q — 2us)

Further it is postulated thatis+; = uvexp(isKa) exp(£iKa).

This gives: us = exp(iKsa). Substituting the later two equations in the fist results in a system of linear
equations, which has only a solution if their determinant is 0. This gives:

Only vibrations with a wavelength within the first Brillouin Zone have a physical significance. This requires
that—7 < Ka < 7.

The group velocity of these vibrations is given by:

dw Ca? L
Vg = e = WCOS(§KG) .

and is 0 on the edge of a Brillouin Zone. Here, there is a standing wave.

12.3.2 A lattice with two types of atoms

Now the solutions are: W
2 .2
1 1 1 1 4sin“(Ka) \
2
=C|— — |+ C _— e B — S 2C
v (M1 + Mz) \/(M1 + Mg) MM, s
Connected with each value afare two values of(, as can be P I2V_[c1
seen in the graph. The upper line describes the optical branch, -
the lower line the acoustical branch. In the optical branch,
both types of ions oscillate in opposite phases, in the acoustical g K
branch they oscillate in the same phase. This results in a much T/a

larger induced dipole moment for optical oscillations, and also a
stronger emission and absorption of radiation. Furthermore each
branch has 3 polarization directions, one longitudinal and two
transversal.

12.3.3 Phonons

The quantum mechanical excitation of a crystal vibration with an enkegis called aphonon Phonons

can be viewed as quasi-particles: with collisions, they behave as particles with monfektuimheir total
momentum is 0. When they collide, their momentum need not be conserved: for a normal process holds:
K, + Ko = K3, for an umklapp process hold&’; + Ko = K3 + G. Because phonons have no spin they
behave like bosons.
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12.3.4 Thermal heat capacity

The total energy of the crystal vibrations can be calculated by multiplying each mode with its energy and sum
over all branche&” and polarization$:

hw
U= ZZhw nk.p) Z/ exp hw/kT)fld
for a given polarizatior\. The thermal heat capacity is then:

B hw/kT) exp(hw/kT)
kZ/ (exp(hw/ET) — 1)? dw

Clattice -

The dispersion relation in one dimension is given by:

LdK Ld
D(w)dw = ——dw = et
™ dw T Vg

In three dimensions one applies periodic boundary conditions to a cubéWigtimitive cells and a volume
L3: exp(i(Kyz + Kyy + K.2)) = exp(i(Ky(x + L) + Ky(y + L) + K. (2 + L))).

Becausexp(27i) = 1 this is only possible if:

P 4 6 2N
K, K, K. =0; i%; i%; i%; iTW

So there is only one allowed value &f per volume(27/L)? in K-space, or:

L\* v
o2r ) 8n3
allowed K -values per unit volume itk -space, for each polarization and each branch. The total number of
states with a wave vectet K is: )
N ( L )5 AT K?
21 3

for each polarization. The density of states for each polarization is, according to the Einstein model:

dN (VKQ) dK

D) =25 — (X2
() dw o2 ) dw 87r‘3

TheDebye modefor thermal heat capacities is a low-temperature approxmation which is validup K.
Here, only the acoustic phonons are taken into account (3 polarizations), and one assumes thdt,
independent of the polarization. From this follow3{w) = Vw? /27203, wherev is the speed of sound. This

gives:
., / Dl () v /D Vw? hw L BVERT! /D Pdx
= waw = w = G .
27203 exp(hw/kT) — 1 o203k ) e —1
0

0

Here,xp = hwp /kT = 0p /T 0p is theDebye temperaturand is defined by:

hv (672N 1/3
0p = —
k \%4

whereN is the number of primitive cells. Becausg — oo for ' — 0 it follows from this:

~T* and Cy — 127 NET3

T 3/00 Wi 3TNKT? - o
e*—1  50p 563,
)

U=9NkT (—
fp

In the Einstein model for the thermal heat capacity one considers only phonons at one frequency, an approxi-
mation for optical phonons.
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12.4 Magnetic field in the solid state

The following graph shows the magnetization versus fieldstrength for different types of magnetism:

M
Msat

ferro
oM

X =
"™ 0H paramagnetism

diamagnetism

12.4.1 Dielectrics

The quantum mechanical origin of diamagnetism is the Larmorprecession of the spin of the electron. Starting
with a circular electron orbit in an atom with two electrons, there is a Coulomb fgremd a magnetic force
on each electron. If the magnetic part of the force is not strong enough to significantly deform the orbit holds:

w2 = Fe(r) + §

B B\? B
= w:wgi%(wo—i-é)ﬁw:\/(woie—) +---%w0i;—m:w0iwL

mr 2m

Here,wy, is the Larmor frequency One electron is accelerated, the other decelerated. Hence there is a net
circular current which results in a magnetic momgnThe circular current is given by = —Zewy, /27, and

(n) = TA = It (p*) = I (r?). If N is the number of atoms in the crystal it follows for the susceptibility,

-3
with M = N
‘LL()M /L()NZGQ 2
B~ 6m (%)

12.4.2 Paramagnetism

Starting with the splitting of energy levels in a weak magnetic fiedr,,, — /i - B = mygupB, and with a
distributionf,,, ~ exp(—AU,,/kT), one finds for the average magnetic moment= >_ f..u/ > fm. After
linearization and becau$€ m; =0, J = 2J + 1andy_m? = 2J(J + 1)(J + 3) it follows that:

~poM N () ped(J 4+ 1)g*up N
X»="pg T ~ 3T

This is theCurie law, x, ~ 1/T.

12.4.3 Ferromagnetism

A ferromagnet behaves like a paramagnet above a critical tempefatufe describe ferromagnetism a field
Bg parallel with M is postulated:Bg = A\ugM. From there the treatment is analogous to the paramagnetic
case:

C
poM = Xp(Ba + BE) = Xp(Ba + AoM) = po (1 - )\T) M

poM - C
B, T-T.

If Bg is estimated this way it results in values of about 1000 T. This is clearly unrealistic and suggests another

mechanism. A quantum mechanical approach from Heisenberg postulates an interaction between two neigh-

bouring atomst/ = —2.JS; - §; = —ji - Bg. J is an overlap integral given byf = 3k7./225(S + 1), with

z the number of neighbours. A distinction between 2 cases can now be made:

From this follows for a ferromagnet;r = which isWeiss-Curie’s law

1. J > 0: S; andS; become parallel: the material is a ferromagnet.
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2. J < 0: S; andS; become antiparallel: the material is an antiferromagnet.

Heisenberg’s theory predicts quantized spin waves: magnons. Starting from a model with only nearest neigh-
bouring atoms interacting one can write:

s & 5 . 3 . = —2J = =
U= =2J5p(Sp-1+ Spy1) & fip - By with B, = ——(S,_1 + Sp41)

2J = - -
?SP X (Sp—1+ Sp+1)

From here the treatment is analogous to phonons: postulate traveling waves of tﬁg typeexp(i(pka —
wt)). This results in a system of linear equations with solution:

The equation of motion for the magnons becon%%::

hw = 4JS(1 — cos(ka))

12.5 Free electron Fermi gas

12.5.1 Thermal heat capacity

The solution with period. of the one-dimensional Satalinger equation isy,,(x) = Asin(27z/An) with
nA, = 2L. From this follows
b5 (F)
2m \ L

In a linear lattice the only important quantum numbersraemdm,. TheFermi levelis the uppermost filled
level in the ground state, which has thermi-energyEr. If ng is the quantum number of the Fermi level, it
can be expressed @& = N so Ex = h’72N?/8mL. In 3 dimensions holds:

2N 1/3 FLQ 2N 2/3
kr = 37 and B = — 37
\%4 2m 1%

. . vV [2mE\*?
The number of states with energyE is then: N = 32 \ 72 .
Y

. N
and the density of states becoméx.E) = v (

" T2

om\ */? 3N
S 4E o2 E=

The heat capacity of the electrons is approximately 0.01 times the classical expecté}Nalu‘Ehis is caused
by the Pauli exclusion principle and the Fermi-Dirac distribution: only electrons within an energy~atifje
of the Fermi level are excited thermally. There is a fractiofT’/Tr excited thermally. The internal energy

then becomes:
oU

T T
~NkT'— and C = — ~ Nk—
v Tr ¢ oT Tr
A more accurate analysis give€siectrons = %wQNkT/TF ~ T. Together with thel™ dependence of the
thermal heat capacity of the phonons the total thermal heat capacity of metals is described b7 + AT3.

12.5.2 Electric conductance

The equation of motion for the charge carriers i:= mdv/dt = th/dt. The variation ofk is given by
ok = k(t) — k(0) = —eFEt/h. If T is the characteristic collision time of the electrofis,remains stable if
t = 7. Then holds:(#) = puE, with . = e /m themobility of the electrons.

The currentin a conductor is given by'= ng# = o E = E/p = nepE. Because for the collision time holds:
1/7 =1/, + 1/7;, wherery, is the collision time with the lattice phonons andhe collision time with the
impurities follows for the resistivity = pr + p;, with %imo pr = 0.




Chapter 12: Solid state physics 67

12.5.3 The Hall-effect

If a magnetic field is applied. to the direction of the current the charge carriers will be pushed aside by the
Lorentz force. This results in a magnetic fieldo the flow direction of the current. If = Jé, andB = Be,
thanE, /E, = pB. The Hall coefficient is defined bRy = E,/J, B, andRy = —1/neif J, = nepk;.

The Hall voltage is given byVy = Bvb = I B/neh whereb is the width of the material antd de height.

12.5.4 Thermal heat conductivity

With ¢ = vp7 the mean free path of the electrons follows frem= %C (V) €2 Kelectrons = T2nk*T'T/3m.
From this follows for theNiedemann-Franz ratias /o = 3 (k/e)?T.

12.6 Energy bands

In the tight-bondapproximation it is assumed that = e**"?¢(z — na). From this follows for the energy:

(E) = (¢|H|Y) = Ea, — a — 20 cos(ka). So this gives a cosine superimposed on the atomic energy, which
can often be approximated by a harmonic oscillator. If it is assumed that the electron is nearly free one can
postulatex) = exp(ik - 7). This is a traveling wave. This wave can be decomposed into two standing waves:

Y(+) = explirz/a) + exp(—inz/a) = 2cos(mz/a)
Y(=) = exp(irz/a) — exp(—inx/a) = 2isin(rz/a)

The probability density(+)|? is high near the atoms of the lattice and low in between. The probability
density|:)(—)|? is low near the atoms of the lattice and high in between. Hence the energyofis also
lower than the energy af)(—). Suppose thal/ (x) = U cos(2mz/a), than the bandgap is given by:

By = [ V@) [0() = [0(-)] do = U

12.7 Semiconductors

The band structures and the transitions between them of direct and indirect semiconductors are shown in
the figures below. Here it is assumed that the momentum of the absorbed photon can be neglected. For an
indirect semiconductor a transition from the valence- to the conduction band is also possible if the energy of
the absorbed photon is smaller than the band gap: then, also a phonon is absorbed.

1) conduction 1)

\ / band :\\ /\/
D
C) Weg QO ()w

Direct transition Indirect transition

This difference can also be observed in the absorption spectra:
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absorption absorption

E

: E
huwg E, + hQ

Direct semiconductor Indirect semiconductor

So indirect semiconductors, like Si and Ge, cannot emit any light and are therefore not usable to fabricate
lasers. When light is absorbed holds;, = —k., En(kn) = —Fe(ke), h = ¥ andmy, = —m} if the
conduction band and the valence band have the same structure.

Instead of the normal electron mass one has to useffaetive maswithin a lattice. It is defined by:

*

T a dvg/dt Udv,

_F o dp/dt  dK ., (BN
dk?
with E = hw andvg = dw/dk andp = hk.

With the distribution functionf.(E) ~ exp((u — E)/kT) for the electrons angh,(E) = 1 — f.(E) for the
holes the density of states is given by:

1 /2m*\*?
D(E)W<7) BB

with E. the energy at the edge of the conductance band. From this follows for the concentrations of the holes

p and the electrons:
(oo} 4
m*kT\*? uw—E.
= | Do(E)fo(E)dE =2 | ——
n= [ DuppnEe =220 ) e (M)
E.

c

kT \° E
For the productip follows: np = 4 (27rh2) \/mEmy exp (k_;")

For an intrinsic (no impurities) semiconductor holds:= p;, for an — type holds:n > p and in ap — type
holds:n < p.

An exciton is a bound electron-hole pair, rotating on each other as in positronium. The excitation energy of an
exciton is smaller than the bandgap because the energy of an exciton is lower than the energy of a free electron
and a free hole. This causes a peak in the absorption just ihder

12.8 Superconductivity

12.8.1 Description
A superconductoris characterized by a zero resistivity if certain quantities are smaller than some critical values:
T <T.1I<I. andH < H.. TheBCS-modepredicts for the transition temperatufg

-1
TC = 114("‘)]:) exp (m)

while experiments find foH . approximately:
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Within a superconductor the magnetic field is O: Meissner effect

There are type | and type Il superconductors. Because the Meissner effect implies that a superconductor is a
perfect diamagnet holds in the superconducting sthte: uolﬁ. This holds for a type | superconductor, for

a type Il superconductor this only holds to a certain valiyg, for higher values ofi the superconductor is in
avortex statdo a valueH_,, which can be 100 timeH.;. If H becomes larger thaH ., the superconductor
becomes a normal conductor. This is shown in the figures below.

poM poM

H 5 H
HC Hcl Hc2

Type | Type Il

The transition to a superconducting state is a second order thermodynamic state transition. This means that
there is a twist in thd” — S diagram and a discontinuity in th@&yx — 7" diagram.

12.8.2 The Josephson effect

For the Josephson effect one considers two superconductors, separated by an insulator. The electron wave-
function in one superconductords, in the othen),. The Schodinger equations in both superconductors is
set equal:

01 Ova
ih—— =hT ih——= ="hT
5 Pa D U1
KT is the effect of the coupling of the electrons, or the transfer interaction through the insulator. The electron
wavefunctions are written as = /n1 exp(if1) andy, = \/n3 exp(ib:). Because a Cooper pair existtafo

electrons holdsy ~ /n. From this follows, ifn; ~ na:

) _ 06 Ona _ Om
ot ot ot ot
The Josephson effect results in a current density through the insulator depending on the phase difference as:
J = Jpsin(fz — 61) = Jysin(d), whereJy ~ T. With an AC-voltage across the junction the Sudinger
equations become:

h% = ATy — eVp; and zhﬁ =NTY1 + eVihy

. 2
This gives:J = Jy sin (92 — 0, — e;b/t).

Hence there is an oscillation with = 2eV/h.

12.8.3 Flux quantisation in a superconducting ring

For the current density in general holdB:= qv* 5 = “L[hVE — gA]
m

From the Meissner effecf = 0 and.J = 0, follows: iVl = gA = § VOdl = 65 — 6, = 27s with s € IN.

Because:f Adl = [[(rotA, 7t )do = [[(B,7)do = W follows: ¥ = 27hs/q. The size of a flux quantum
follows by settings = 1: ¥ = 27fi/e = 2.0678 - 1075 Tm?.
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12.8.4 Macroscopic quantum interference

. . 2eWU
From@, — 6; = 2eV /1 follows for two parallel junctionsd, — 6, = %, SO0

J=Jys+ Jp, = 2Jpsin (60 cos (%)) This gives maxima il /i = s.

12.8.5 The London equation

A current density in a superconductor proportional to the vector potecﬁistbostulated:

or rotj =
M()AL M()A%

where\;, = \/zomc? /ng?. From this follows: V2B = B/2.

The Meissner effect is the solution of this equatidB{z) = Byexp(—z/Az). Magnetic fields within a
superconductor drop exponentially.

12.8.6 The BCS model

The BCS model can explain superconductivity in metals. (So far there is no explanation faf.légphercon-
ductance).

A new ground state where the electrons behave like independent fermions is postulated. Because of the in-
teraction with the lattice these pseudo-particles exhibit a mutual attraction. This causes two electrons with
opposite spin to combine to@ooper pait It can be proved that this ground state is perfect diamagnetic.

The infinite conductivity is more difficult to explain because a ring with a persisting current is not a real
equilibrium: a state with zero current has a lower energy. Flux quantization prevents transitions between these
states. Flux quantization is related to the existence of a coherent many-particle wavefunction. A flux quantum
is the equivalent of aboun* electrons. So if the flux has to change with one flux quantum there has to occur

a transition of many electrons, which is very improbable, or the system must go through intermediary states
where the flux is not quantized so they have a higher energy. This is also very improbable.

Some useful mathematical relations are:

/ rdr 2 / z2dx B 2 / z3dx B d
ew +1 1242’ (er +1)2 37 er+1 15
0 —o0 0

And, WhenZ(fl)” = 1 follows: /sin(p:c)d:v = /cos(pa:)da: = 1
b
0 0

n=0
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Theory of groups

13.1 Introduction

13.1.1 Definition of a group
G is a group for the operationif:
1. Vapeg = Ao B e G: Gisclosed
2.VaBceg = (AeB)e(C = Ae(Be(): Gobeysthassociative law
3. dgeg sothatVacgA e E = F e A = A: G has aunit element
4. VaegIa-1¢cg SO thatd e A1 = E: Each element iy has arinverse
If also holds:

5.V4,Bcg = A e B = B e Athe group is called\belianor commutative

13.1.2 The Cayley table

Each element arises only once in each row and column of the Cayley- or multiplication table: bEcguse
A,;l(AkAi) = A; eachA; appears once. There akepositions in each row and column when there &are
elements in the group so each element appears only once.

13.1.3 Conjugated elements, subgroups and classes

B is conjugateto A if Ixcg such thatB = XAX~!. Then A is also conjugate td3 becauseB =
(X~HAX YL

If B andC are conjugate tal, B is also conjugate witld'.

A subgroups a subset off which is also a group w.r.t. the same operation.

A conjugacy classs the maximum collection of conjugated elements. Each group can be split up in conjugacy
classes. Some theorems:

o All classes are completely disjoint.
e Fis aclass itself: for each other element in this class would hélet XEX ! = E.
e F isthe only class which is also a subgroup because all other classes have no unit element.
e In an Abelian group each element is a separate class.
The physical interpretation of classes: elements of a group are usually symmetry operations which map a

symmetrical object into itself. Elements of one class are then the same kind of operations. The opposite need
not to be true.
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13.1.4 Isomorfism and homomorfism; representations

Two groups arésomorphicif they have the same multiplication table. The mapping from g@uo G-, so
that the multiplication table remains the same is a homomorphic mapping. It need not be isomorphic.

A representatioris a homomorphic mapping of a group to a group of square matrices with the usual matrix
multiplication as the combining operation. This is symbolized by he following holds:

I(E)=1, I'(AB) =T(AT(B) , I(A™") =[(4)]*
For each group there are 3 possibilities for a representation:
1. Afaithful representation: all matrices are different.
2. The representatiod — detT'(A)).
3. The identical representatiod: — 1.

An equivalent representatias obtained by performing an unitary base transformatigfa) = S—1T'(A)S.

13.1.5 Reducible and irreducible representations

If the samaunitary transformation can bring all matrices of a representationthe same block structure the
representation is callegducible
&
I(A) = ( r'(A) 0 )

0 r®(A)

This is written asT' = '™ @ T'(?). If this is not possible the representation is calleeducible
The number of irreducible representations equals the number of conjugacy classes.

13.2 The fundamental orthogonality theorem

13.2.1 Schur’'s lemma

Lemma: Each matrix which commutes with all matrices of an irreducible representation is a cordtant
wherel is the unit matrix. The opposite is (of course) also true.

Lemma: If there exists a matrix\/ so that for two irreducible representations of gragpy()(A4;) and
v (4;), holds: M~ (4;) = v (4;)M, than the representations are equivalenfyor= 0.

13.2.2 The fundamental orthogonality theorem

For a set of unequivalent, irreducible, unitary representations holds thag the number of elements in the
group and/; is the dimension of theéh representation:

Z FEL)/ (R)Fgg(R) = Zéij(s;wc(suﬁ
Reg ¢

13.2.3 Character

Thecharacterof a representation is given by the trace of the matrix and is therefore invariant for base trans-
formations] x\) (R) = Tr(I'V)(R))

Also holds, withV;, the number of elements in a conjugacy cIasEE X% (Cr)X9) (Ck) Ny = hdy;
k

Theorem: » (7 =1

i=1
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13.3 The relation with quantum mechanics

13.3.1 Representations, energy levels and degeneracy

Consider a set of symmetry transformatiatis= R which leave the Hamiltoniaf{ invariant. These trans-
formations are a group. An isomorfic operation on the wavefunction is giveRpy(# ) = (R~'%). This
is considered amctive rotation These operators commute with: PrH = HPg, and leave the volume
element unchanged(Rz% ) = dz.

P is the symmetry group of the physical system. It causes degeneragyisfa solution ofH,, = E, 1,
than also holdsH(Pgr,) = E,.(Priyn). A degeneracy which is not the result of a symmetry is called an
accidental degeneracy

Assume art,,-fold degeneracy ak,,: then choose an orthonormal 3@&"), v=12,...,¢,. The function

PryS™ is in the same subspacByr (" = Z YT (R)

k=1
whereTI'(") is anirreducible, unitaryrepresentation of the symmetry grogpof the system. Each corre-
sponds with another energy level. One can purely mathematical derive irreducible representations of a sym-
metry group and label the energy levels with a quantum number this way. A fixed chdié® 6R) defines
the base function&(,”). This way one can also label each separate base function with a quantum number.
Particle in a periodical potential: the symmetry operation is a cyclic group: note the operator describing one

translation over one unit aé. Then:G = {A, A% A3 ... A" = E}.
The group is Abelian so all irreducible representations are one-dimensional Fpr< h — 1 follows:

F(p) (An) _ eQTripn/h

If one defines:k = —ZL]f <mod2—7r), SO: Pathy(z) = tp(x — a) = e*™P/hqp (z), this givesBloch’s
a a

theorem ¢y, (z) = ug(2)e™™, with uy,(z & a) = ug(x).

13.3.2 Breaking of degeneracy by a perturbation

Suppose the unperturbed system has Hamiltoftigrand symmetry grou,. The perturbed system has

H = Ho + V, and symmetry groug C Go. If T(")(R) is an irreducible representation §, it is also a
representation of but not all elements of (™ in G, are also ing. The representation then usually becomes
reducible T(") = I'(™) ¢ T("2) ¢ ... The degeneracy is then (possibly partially) removed: see the figure
below.

by, = dim(F(nl))
‘n £y, = dim(I'("2))

ly, = dim(I'("s))

SpectruntH, SpectruntH

n)

Theorem: The set of/,, degenerated elgenfunctlomé
irreducible representatidi™ of the symmetry group.

with energyFE,, is a basis for arf,,-dimensional

13.3.3 The construction of a base function

Each functionF' in configuration space can be decomposedsytometry types' = Z Z f,gj)

j=1r=1

The following operator extracts the symmetry types:

< Z F(])* pR> F = f,S”

Reg
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This is expressed ag'’’ is the part ofF that transforms according to thdd row of 10).
F can also be expressed in base functignsF = > caj,{ga(‘”). The functionsf!”’ are in general not

ajk

transformed into each other by elements of the group. However, this does happgnfc;,.

Theorem: Two wavefunctions transforming according to non-equivalent unitary representations or according
to different rows of an unitary irreducible representation are orthogonal:

(@ 109) ~ 656,55, and (o [») is independent of.
13.3.4 The direct product of representations

Consider a physical system existing of two subsystems. The subBp4ax the system transforms according

to IV, Basefunctions are(’(#;), 1 < x < ¢;. Now form all ¢, x £, productsp{” () (#2). These
define a spac®) @ D®).

These product functions transform as:
Pr(eD (@) (@2)) = (Prel) (1)) (Prel (32))

In general the spac®™) ® D) can be split up in a number of invariant subspaces:

' or® = Znif‘(i)

A useful tool for this reduction is that for the characters hold:

YO(R me

13.3.5 Clebsch-Gordan coefficients

With the reduction of the direct-product matrix w.r.t. the baéf%go&j) one uses a new bas&éf’””). These base
functions lie in subspacds(**). The unitary base transformation is given by:

Zcp“ (i aky)

and the inverse transformation byt o\ = > ol (akplirgN)
akp

In essence the Clebsch-Gordan coefficients are dot produefsi|akp) := <<p,(c )go& )| Ef’k)>

13.3.6 Symmetric transformations of operators, irreducible tensor operators

Observables (operators) transform as follows under symmetry transformatibrs: Pr APj, 1 If a set of
operatorsA,(J) with 0 < k < ¢; transform into each other under the transformatior bblds:

PRA,(J)P}% Z A (J)

If 1) is irreducible they are calleideducible tensor operatorg (") with componentst?’.
An operator can also be decomposed into symmetry types:> ag), with:

jk

G =2 E (4)* —1
arc] - <h, FK]H (R)> (PRAPR )

Reg
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Theorem: Matrix elementsH;; of the operatof{ which is invariant undey 4c¢, are 0 between states which
transform according to non-equivalentirreducible unitary representations or according to different rows of such

a representation. Furthe,b,(f)|H|¢S)> is independent of. For’H = 1 this becomes the previous theorem.

This is applied in quantum mechanicsparturbation theoryandvariational calculus Here one tries to diag-
onalizeH. Solutions can be found within each category of functi@[ﬁ% with commoni andx: H is already

diagonal in categories as a whole.

Perturbation calculusan be applied independent within each category. With variational calthéusy func-

tion can be chosen within a separate category because the exact eigenfunctions transform according to a row
of an irreducible representation.

13.3.7 The Wigner-Eckart theorem

Theorem: The matrix elementy{”|AY|y{¥) can only bez 0if ') @ T*) = .. o T® g .. .. Ifthis is
the case holds (if ) appears only once, otherwise one has to sum ejer

(1A 9 ) = (k) (00 A9 )

This theorem can be used to determine selection rules: the probability of a dipole transition is gigés by (
the direction of polarization of the radiation):

- 87T2€2f3|7“12|2
N 3h5003
Further it can be used to determine intensity ratios: if there is only one valuehd# ratio of the matrix

elements are the Clebsch-Gordan coefficients. For maadues relations between the intensity ratios can be
stated. However, the intensity ratios are also dependent on the occupation of the atomic energy levels.

Pp with 12 = <lgm2|€’ F|llm1>

13.4 Continuous groups

Continuous groups have = co. However, not all groups withh = oo are continuous, e.g. the translation
group of an spatially infinite periodic potential is not continuous but does havec.

13.4.1 The 3-dimensional translation group

For the translation of wavefunctions over a distand®lds: P,y (z) = ¢(xz — a). Taylor expansion near
gives:
dp(z) 1 ,d*P(x)

dx —|—2a dx?

Y@ —a)=y(x)—a —+...

. o ho . .
Because the momentum operator in quantum mechanics is given by.— e this can be written as:
1 0%
Uz —a) = e P/ My(x)

13.4.2 The 3-dimensional rotation group

This group is called SO(3) because a faithful representation can be constructed from ortBogdmnadtrices
with a determinant of +1.

For an infinitesimal rotation around theaxis holds:
P&eﬁ/f(xa Y, Z) ~ 1/1(937 Y+ 259937 z— y(sea:)

0 0
1/1(93731,2) + <259x6_y - y59x£> 1/1(3372/,2)

100, L,
= (1= =) v




76 Physics Formulary by ir. J.C.A. Wevers

o h 0 0
Because the angular momentum operator is givenQy= — Za_ — ya— .
7 Yy z
So in an arbitrary direction holds: __Rotations: P, ; = exp(—ia(7i - J)/h)
Translations: P, i = exp(—ia(7i - p')/h)
Jz, Jy andJ, are called thgeneratorsof the 3-dim. rotation groump,, p, andp,. are called the generators of
the 3-dim. translation group.

The commutation rules for the generators can be derived from the properties of the group for multiplications:
translations are interchangeablep,p, — pyp. = 0.

Rotations are not generally interchangeable: consider a rotation around iaxile xz-plane over an angle

a. Then holds:P, 7 = P_g yPo o Py, SO:

efwz(nu])/h — ewa/he*%aJm/he*wa/h

If o and¢ are very small and are expanded to second order, and the corresponding terms are put equal with
7i - J = Jycos@ + J,sin 0, it follows from thead term: J, J, — J,J, = ihJ..

13.4.3 Properties of continuous groups

The elementsk(p1, ..., p) depend continuously on parametgis..., p,,. For the translation group this are
e.g.ang, an, andan.. Itis demanded that the multiplication and inverse of an elerRatgpend continuously
on the parameters a@t.

The statement that each element arises only once in each row and column of the Cayley table holds also for
continuous groups. The notion conjugacy class for continuous groups is defined equally as for discrete groups.
The notion representation is fitted by demanding continuity: each matrix element depends continuously on

Pi (R)

Summation over all group elements is for continuous groups replaced by an integrafioR) is a function
defined org, e.g.I',3(R), holds:

/ J(R)AR = / / FRP1s s )9 (RD1s o p))dpr - dpi
g P1 Pn

Here,g(R) is thedensity function

Because of the properties of the Cayley table is demanfigdR)dR = [ f(SR)dR. This fixesg(R) except
for a constant factor. Define new variablédy: SR(p;) = R(p}). If one writes:dV := dp; - - - dp,, holds:

av

9(8) = 9(E) 31

dVv . . dV
Here,W is theJacobian

- = det(api ) ,andg(E) is constant.

ap;-

For the translation group holdg(@) = constant= (0 ) because (a7 )da’ = ¢(0)dd andda’ = da.

This leads to the fundamental orthogonality theorem:

[ R RIR = 00,0000 [ dr
G g
and for the characters hold:
[ mar =, [ ar
g g
Compacgroups are groups with a finite group vqunfg:dR < o0.
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13.5 The group SO(3)

One can take 2 parameters for the direction of the rotational axis and one for the angle of rptafibe
parameter space is a collection poigts within a sphere with radius. The diametrical points on this sphere
are equivalent becaus; » = Ry _ .

Another way to define parameters is by meanEulers anglesif «, 3 and~ are the 3 Euler angles, defined
as:

1. The spherical angles of axis 3w.rtyz ared, ¢ := 3, a. Now a rotation around axis 3 remains possible.
2. The spherical angles of theaxis w.r.t. 123 aré, ¢ := 3,7 — ~

then the rotation of a quantum mechanical system is described by:
1/) N e*ianhe*iﬁjy/he*i%lz/hw_ SoPgp = efis(ﬁ-J)/h.

All irreducible representations of SO(3) can be constructed from the behaviour of the spherical harmonics
Yim (0, ) with —I < m <[ and for a fixed:

PRE/Im Z YEm/ DErlL)m (R)
D is an irreducible representation of dimensin- 1. The character oD is given by:

in([l + %]a)
(l) imoa _ =142 k SIH([ 2
n;l e Z cos(ka) 75111(%04)

In the performed derivation is the rotational angle around theaxis. This expression is valid for all rotations
over an anglex because the classes of SO(3) are rotations around the same angle around an axis with an
arbitrary orientation.

Via the fundamental orthogonality theorem for characters one obtains the following expression for the density
function (which is normalized so tha{0) = 1):

sin®(%a)
(30)?

g(a) =

With this result one can see that the given representations of SO(3) are the only ones: the character of another
representatiory’ would have to bel to the already found ones, s6(« )s1r12(2 ) = 0Va = x/(a) = OVa.
This is contradictory because the dimension of the representation is giveii)y

Because fermions have an half-odd integer spin the statgswith s = % andm, = i% constitute a 2-dim.
space which is invariant under rotations. A problem arises for rotationaver

72 1S, /h 72
w%'rns miss/ wimq Wzmbwémg - _w%'rns

However, in SO(3) holdsR, o = E. So here hold€&, — +1. Because observable quantities can always be
written as(¢|y) or (¢|Alv), and are bilinear in the states, they do not change sign if the states do. If only one
state changes sign the observable quantities do change.

The existence of these half-odd integer representations is connected with the topological properties of SO(3):
the group is two-fold coherent through the identificatidn= Ry, = E.

13.6 Applications to quantum mechanics

13.6.1 Vectormodel for the addition of angular momentum

If two subsystems have angular momentum quantum numbensd j» the only possible values for the total
angular momentum até = j; + jo, j1 +j2 — 1, ..., |j1 — j2|. This can be derived from group theory as follows:
from xU1) ()x2) (a) = 3 njx) () follows:

J

DU g pU2) — pliitiz) g plitia=1) g g pllir—d2l)
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The states can be characterized by quantum numbers in two waysj;with, j2, mo and withjy, jo, J, M.
The Clebsch-Gordan coefficients, for SO(3) calledWigner coefficientcan be chosen real, so:
VjjpdM = 20 Yjimyjame (J1majame| JM)
mime

wjl’"bljZ’mZ

> Yjrjpan (Gima jomo| J M)
JM

13.6.2 Irreducible tensor operators, matrixelements and selection rules
Some examples of the behaviour of operators under SO(3)

1. Supposej = 0: this gives the identical representation with = 1. This state is described by a

scalar operator BecausePl:gA(()O)PIg1 = A(()O) this operator is invariant, e.g. the Hamiltonian of a
free atom. Then holds.J’ M'|H|J M) ~ dprardry -

2. Avector operatord = (4,, A,, A.). The cartesian components of a vector operator transform equally
as the cartesian componentgdfy definition. So for rotations around theaxis holds:

cosa —sina 0
D(R,.)=| sina cosa O
0 0 1

The transformed operator has the same matrix elements #int.and Pr ¢:

(Pri)|PrRAPR ' |Pre) = (¢|As]¢), andx(Ra,.) = 1+ 2cos(a). According to the equation for
characters this means one can choose base operators which transfdriy,ljey). These turn out to
be the spherical components:

RS
V2

S

1) _
A+1 - \/5

(Ao +idy), A=A, A = —-(4; —iA,)

3. A cartesian tensor of rank 7}, is a quantity which transforms under rotations IKg/;, wherel and
V are vectors. S@; transforms likePrT;; Pr' = " TwDwi(R)Dy;(R), so like DY) @ DO =
kl

D® @ DM ¢ DO, The 9 components can be split in 3 invariant subspaces with dimengiof),
3 (DW) and 5(D®). The new base operators are:

l. Tr(L') = Typ + Ty + T:.. This transforms as the scalr- V, so asD(®).

Il. The 3 antisymmetric components, = %(sz — Ty.), etc. These transform as the vedtox V,
so asDW.

lll. The 5 independent components of the traceless, symmetric t8nsor
Sij = 2(Ty; + Tji) — 36,5 Tr(T). These transform a®®).

Selection rules for dipole transitions

Dipole operators transform @(!): for an electric dipole transfer is the operatat for a magnetiea(fj +
25 /2m.

From the Wigner-Eckart theorem followsJ’ M’| A% |JM) = 0 exceptD() is a part of D) @ D) =
DY+ ¢ D) @ pU/=1D, This means thai’ € {J + 1,.J,|J — 1|}: J' = JorJ' = J =+ 1, except
J =J=0.

Landé-equation for the anomalous Zeeman splitting

According to Lané’s model the interaction between a magnetic moment with an external magnetic field is
determined by the projection @ff on J becausd. andS precede fast around. This can also be understood
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from the Wigner-Eckart theorem: from this follows that the matrix elements from all vector operators show a
certain proportionality. For an arbitrary operatbfollows:

(ajm|A - J|ajm)
G +1n?

(ajm/|Alagm) = (agm/|J |ojm)

13.7 Applications to particle physics

The physics of a system does not change after performing a transformatier**«) wheres is a constant.
This is aglobal gauge transformatiarthe phase of the wavefunction changes everywhere by the same amount.

There exists some freedom in the choice of the potentiaisds at the same andB: gauge transformations
of the potentials do not chandgeand B (See chapter 2 and 10). The solutiohof the Schodinger equation
with the transformed potentials ig? = e~/ (")),

This is alocal gauge transformatiarthe phase of the wavefunction changes different at each position. The
physics of the system does not change #ind¢ are also transformed. This is now stated as a guide principle:
the “right of existence” of the electromagnetic field is to allow local gauge invariance

The gauge transformations of the EM-field form a group: U(1), unitaxyl-matrices. The split-off of charge
in the exponent is essential: it allows one gauge field for all charged particles, independent of their charge.

This concept is generalized: particles have a “special chapgdhe group elements now are
Pr = exp(—iQ0O).

Other force fields than the electromagnetic field can also be understood this way. The weak interaction together
with the electromagnetic interaction can be described by a force field that transforms accordingtS W)

and consists of the photon and three intermediary vector bosons. The colour force is described by SU(3), and
has a gauge field that exists of 8 types of gluons.

In general the group elements are givenRyy = exp(—if- é), whereO,, are real constants afg, operators
(generators), like). The commutation rules are given [, 7;] = i > ¢;jxTk. Thec;;;, are thestructure
k

constantwf the group. For SO(3) these constants @fg = ¢;;;, heree;;;, is the complete antisymmetric
tensor withs193 = +1.

These constants can be found with the help of group product elements: bgadawdesed holds:
¢lOTei® To-i0Te—i®"T _ o~i®"-T Taylor expansion and setting eqult©'™-terms results in the com-
mutation rules.

The group SU(2) has 3 free parameters: because it is unitary there are 4 real conditions over 4 complex
parameters, and the determinant has to be +1, remaining 3 free parameters.

Each unitary matrix/ can be written ast/ = e~ /. Here,H is a Hermitian matrix. Further it always holds
that: det(U) = e~ *Tr(H),

For each matrix of SU(2) holds that H()=0. Each Hermitian, tracele@s< 2 matrix can be written as a linear
combination of the Fauli-matricess;. So these matrices are a choice for the operators of SU(2). One can
write: SU(2)={exp(—3id - ©)}.

In abstraction, one can consider an isomorphic group where only the commutation rules are considered to be
known regarding the operatdfs: [11, T»] = ¢T3, etc.

In elementary particle physics tfié can be interpreted e.g. as tisespinoperators. Elementary particles can
be classified in isospin-multiplets, these are the irreducible representations of SU(2). The classification is:

1. The isospin-singlet the identical representatioel.*if‘é =1=T,=0

2. The isospin-doublet the faithful representation of SU(2) @< 2 matrices.
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The group SU(3) has 8 free parameters. (The group\9WasN? — 1 free parameters). The Hermitian,
traceless operators are 3 SU(2)-subgroups iretlag, €1 ¢3 and theexes plane. This gives 9 matrices, which
are not all 9 linear independent. By taking a linear combination one gets 8 matrices.

8

: S D 0 i

In the Lagrange density for the colour force one has to substé?ate» — = — = E T, Al
T Dx Ox pt

The terms of 3rd and 4th power i show that the colour field interacts with itself.




Chapter 14

Nuclear physics

14.1 Nuclear forces

9 T T L ISS— T T T T T T T T
The mass of a nucleus is given by: " 4
Myuel = Zmp + Nmy — E‘bimd/c2 ; ; | |
The binding energy per nucleon is given in (MeV)g L ; .
the figure at the right. The top is giFe, at| _
the most stable nucleus. With the constants 3l -
ap = 15.760 MeV 2F -
a; = 17.810 MeV 1h _

a3 = 0711 MeV ol
as = 23.702 MeV 0 40 80 120 160 200 240

as = 34.000 MeV A—

andA = Z + N, in thedropletor collective modebf the nucleus the binding ener@inq is given by:

Z2(Z-1) (N-Z

2
A1/3 ezt 1 ) + eas A73/*

Ehina
12n = (llA — a2A2/3 — as
c

These terms arise from:
1. a1: Binding energy of the strong nuclear force, approximately.
2. ao: Surface correction: the nucleons near the surface are less bound.
3. as: Coulomb repulsion between the protons.
4. a4 Asymmetry term: a surplus of protons or neutrons has a lower binding energy.
5

. a5 Pair off effect: nuclei with an even number of protons or neutrons are more stable because groups of
two protons or neutrons have a lower energy. The following holds:

Z even,N even:e = +1, Z odd, N odd:e = —1.
Z even,N odd:e = 0, Z odd, N even:e = 0.

The Yukawa potential can be derived if the nuclear force can to first approximation, be considered as an

exchange of virtual pions:
LY
T To

With AE - At ~ h, E, = moc? andry = cAt follows: ro = Ti/moc.

In the shell model of the nucleus one assumes that a nucleon moves in an average field of other nucleons.
Further, there is a contribution of the spin-orbit coupl'rngE .S AV, = %(2[ + 1)hw. So each level

(n,1) is split in two, with j = I + 1, where the state witi = [ + 3 has the lowest energy. This is just

the opposite for electrons, which is an indication that the S interaction is not electromagnetical. The
energy of a 3-dimensional harmonic oscillatotFis= (N + 3)hw. N = ng + ny +n. = 2(n — 1) + 1

wheren > 1 is the main oscillator number. Becaus¢ < m < [ andm, = +1h there are2(2l + 1)

81
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substates which exist independently for protons and neutrons. This gives rise to the smagiled numbers
nuclei where each state in the outermost level are filled are particulary stable. This is the Nase i
€ {2,8,20,28,50,82,126}.

14.2 The shape of the nucleus
A nucleus is to first approximation spherical with a radiu®of Ry A'/3. Here,Ry ~ 1.4-10~'®> m, constant

for all nuclei. If the nuclear radius is measured including the charge distribution one oBtaiad .2 - 1012
m. The shape of oscillating nuclei can be described by spherical harmonics:

R = Ry

1+ Z alelm (9a 50)‘|

lm

I = 0 gives rise to monopole vibrations, density vibrations, which can be applied to the theory of neutron stars.
[ = 1 gives dipole vibrationd, = 2 quadrupole, withuy ¢ = 5 cosy andas +2 = %x/iﬁ siny whereg is the
deformation factor ang the shape parameter. The multipole moment is givepost Zer'Y;™ (6, ). The

parity of the electric moment g = (—1)!, of the magnetic momet,; = (—1)*1.

€ e =

EandMS:gS S.

There are 2 contributions to the magnetic momad; =
mp 2my

whereggs is the spin-gyromagnetic ratio For protons holdgs = 5.5855 and for neutrongs = —3.8263.
The z-components of the magnetic moment are givedby . = unm; andMg . = gsunmsg. The resulting
magnetic moment is related to the nuclear sparccording toM = g;(e/2m;)I. Thez-componentis then
M, = pngrmy.

14.3 Radioactive decay

The number of nuclei decaying is proportional to the number of nudlei: —AN. This gives for the number
of nucleiN: N(t) = Noexp(—At). Thehalf life timefollows from 7. A = In(2). The average life time
of a nucleus isr = 1/\. The probability thatV nuclei decay within a time interval is given by a Poisson

distribution:
N _ ,—X

Ve
P(N)dt = N()Tdt

If a nucleus can decay into more final states then hols: >~ A;. So the fraction decaying into statés
Ai/ > \i. There are 5 types of natural radioactive decay:

1. a-decay: the nucleus emits a Henucleus. Because nucleons tend to order themselves in groups of
2p+2n this can be considered as a tunneling of &'Haucleus through a potential barrier. The tunnel
probability P is

i i li 1
P= mcom_mg amp_ltude: e 2¢ with G = = Zm/[V(r) — Eldr
outgoing amplitude h

G is called theGamow factor

2. -decay. Here a proton changes into a neutron or vice versa:
pm —>n’+ Wt —-n’+ef +u,andn’ —» pt + W~ — pt +e” +7..

3. Electron capture: here, a proton in the nucleus captures an electron (usually from the K-shell).
4. Spontaneous fission: a nucleus breaks apart.

5. ~-decay: here the nucleus emits a high-energetic photon. The decay constant is given by

21
A= P(Z) E’Y (E'YR) ~ 10—4l

ho (he)? \ he
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where! is the quantum number for the angular momentum &nthe radiated power. Usually the
decay constant of electric multipole moments is larger than the one of magnetic multipole moments.
The energy of the photon I8, = E; — Ey — T, with T = EZ2/2mc? the recoil energy, which

can usually be neglected. The parity of the emitted radiatidi’is= II° - II/. With I the quantum
number of angular momentum of the nucleldis= %+/I(I 4 1), holds the following selection rule:

I — Ij| < AL<|L + Iy .

14.4 Scattering and nuclear reactions

14.4.1 Kinetic model

If a beam with intensityl hits a target with density. and lengthx (Rutherford scattering) the number of
scatteringsk per unit of time is equal t&? = Inxo. From this follows that the intensity of the beam decreases
as—dl = Inodzx. This results il = Ije "% = [ye H*,

. do  R(0,p)
B = Q/dr =1 follows: — =
ecauselR = R(9, p)dY/4m = Inxdo it follows 0= Irnal
. . . . . AN do
If N particles are scattered in a material with densithen holds:T = nEAQAa:
o 212262 1

do
For Coulomb collisions holds=—| =
ds? C 8’/T€(),LL’U(2) sin4(%9)

14.4.2 Quantum mechanical model for n-p scattering

The initial state is a beam of neutrons moving along tkexis with wavefunctionji,;; = ¢**# and current
densityJinit = v|Yiis|?> = v. Atlarge distances from the scattering point they have approximately a spherical
wavefunctionps... = f(0)e’*" /r wheref (6) is thescattering amplitudeThe total wavefunction is then given

by

eik'r

'(/} = '(/}in + wscat = eikz + f(@)

r

The particle flux of the scattered particle®|ggc.:|? = v|f(8)|?dS2. From this it follows that-(6) = | f(6)|?.
The wavefunction of the incoming particles can be expressed as a sum of angular momentum wavefunctions:

Vinie = € = 4
l
The impact parameter is related to the angular momentumiwithbp = bhk, sobk =~ [. At very low energy
only particles withl = 0 are scattered, so
sin(kr)
= )y} and vy =
v=1h+ ) unand g = —

>0

sin(kr 4 do)
kr

. . in? 4 in”
The cross section is then(d) = Smkg‘%) S0 o = /0(9)d9 = ”122 o)

If the potential is approximately rectangular holdg: = C

h2k?/2m

At very low energies holdstin®(6y) = W
0

4
with W, the depth of the potential well. At higher energies holgs: k—z Z Sin2(5l)
l
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14.4.3 Conservation of energy and momentum in nuclear reactions

If a particle P; collides with a particleP, which is in rest w.r.t. the laboratory system and other particles are
created, so

P1+P2—>2Pk

k>2

the total energyy gained or required is given b9 = (my + ma — > my)c?.
k>2

The minimal required kinetic enerdy of P; in the laboratory system to initialize the reaction is

my+mg + Y my
2m2

T=-Q

If Q@ < 0thereis athreshold energy.

14.5 Radiation dosimetry

Radiometric quantitiedetermine the strength of the radiation sourcell®simetric quantitiegre related to
the energy transfer from radiation to matter. Parameters describing a relation between those argeralled
action parametersThe intensity of a beam of particles in matter decreases accordiiig)te= I exp(—ps).
The deceleration of heavyparticle is described by tHgethe-Bloch equatiaon

dE ¢

ds o2
Thefluentionis given by® = dN/dA. Thefluxis given by = d®/dt. The energy loss is defined iy =

dW/dA, and the energy flux density = d¥/dt. Theabsorption coefficiens given by = (dN/N)/dzx.
Themass absorption coefficieistgiven byu/o.

Theradiation doseX is the amount of charge produced by the radiation per unit of mass, with unit C/kg. An
old unit is the Rintgen: 1Re- 2.58 - 10~* C/kg. With the energy-absorption coefficignt follows:

_ dQ _ CUE
X = dm WQ\II
wherelV is the energy required to disjoin an elementary charge.

Theabsorbed dos# is given byD = dE,ps/dm, with unit Gy=J/kg. An old unit is the rad: 1 rad=0.01 Gy.
Thedose tempds defined ad. It can be derived that

D=1y
Y
The Kerma K is the amount of kinetic energy of secundary produced particles which is produced per mass
unit of the radiated object.

The equivalent dosé{ is a weight average of the absorbed dose per type of radiation, where for each type
radiation the effects on biological material is used for the weight factor. These weight factors are called the
quality factors. Their unitis SvH = @QD. If the absorption is not equally distributed also weight factors

per organ need to be usel: = > wy, H;.. For some types of radiation holds:

| Radiation type | Q|
Réntgen, gamma radiation 1
3, electrons, mesons 1
Thermic neutrons 3to5
Fast neutrons 10to 20
protons 10
«, fission products 20




Chapter 15

Quantum field theory & Particle physics

15.1 Creation and annihilation operators

A state with more particles can be described by a collection occupation numbess:s - - -). Hence the
vacuum state is given B900 - - -). This is a complete description because the particles are indistinguishable.
The states are orthonormal:

(oo}
(ninang - - |ninbns ---) = H Onyn!
i=1
The time-dependent state vector is given by
U(t) = Z Cyng-(t)[RAM2 )
e

The coefficients: can be interpreted as follow§:,,, .,...|? is the probability to findh; particles with momen-
tumk;, ny particles with momenturhy, etc., and ¥ (¢)|¥(t)) = 3" |cn, (t)|> = 1. The expansion of the states
in time is described by the Sadtinger equation

d
—|W(t)) = H|P(t
i W () = H ()
where H = Hy + Hiy. Hp is the Hamiltonian for free particles and kedps, (¢)|?> constant,Hiy is the

interaction Hamiltonian and can increase or decreasehithe cost of others.

All operators which can change occupation numbers can be expanded dnatiea’ operators. a is the
annihilation operatoranda' the creation operatoyand:

a(k)|nng---ng--) = Vi lnang - ong —1--2)
aT(;‘f’i”an...m...) = Vni+1|mng---nj+1--)

Because the states are normalized hal@$ = 0 anda(k;)a’ (k;)|n;) = ni|n;). Soaa’ is an occupation
number operator. The following commutation rules can be derived:
la(ki),a(ky)] = 0, [al (ki) al (k)] =0, [a(ks),al(k;)] = 5y

=
%

Hence for free spin-0 particles hold&, = - at (k;)a(k;)hwr,

15.2 Classical and quantum fields

Starting with a real fieldb®(z) (complex fields can be split in a real and an imaginary part) L dgrange
densityL is a function of the position: = (&, ict) through the fields:L = L£(®%(x), 0, P*(x)). The La-
grangian is given by, = [ £(z)d3z. Using the variational principlé/(2) = 0 and with the action-integral
I(Q) = [ L(®*,0,®*)d*z the field equation can be derived:

oL 8 oL
9%~ 0w, 0(0,9%)

Theconjugated fields, analogous to momentum in classical mechanics, defined as:

. or
@) = 55

85
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With this, the Hamilton density becomegz) = I1*®* — £(x).

Quantization of a classical field is analogous to quantization in point mass mechanics: the field functions are
considered as operators obeying certain commutation rules:

(@), 2°(@")] =0, @), 1°@")] =0, [0(&),1°(&")] = idap(T ')

15.3 The interaction picture

Some equivalent formulations of quantum mechanics are possible:
1. Schodinger picture: time-dependent states, time-independent operators.
2. Heisenberg picture: time-independent states, time-dependent operators.
3. Interaction picture: time-dependent states, time-dependent operators.

The interaction picture can be obtained from the 8dimger picture by an unitary transformation:
1B(t)) = 0 |85 (1)) and O(t) = ™o OSe~Hs

The index® denotes the Schdinger picture. From this follows:

d d
i=|2(t)) = Hiue(1)|2(t)) and i O(t) = [O(t), Ho]

15.4 Real scalar field in the interaction picture

Itis easy to find that, with\/ := m2¢?/K?, holds:

0 0 2 2
at(I)( x) =1I(x) and &H(x) = (V? = M?*)®(x)

From this follows that® obeys the Klein-Gordon equatigim — M?)® = 0. With the definitionk? =
k* + M? := w} and the notatiott - Z — ikot := kx the general solution of this equation is:

®(z) \/_Z\/ﬂ< )“””Jra(lg)e’””), (z) \/—Z\/Tk( ke +al (ke ﬂkx)

The field operators contain a volurire which is used as normalization factor. Usually one can take the limit
V — .

In general it holds that the term witit | the positive frequency part, is the creation part, and the negative
frequency part is the annihilation part.

the coefficients have to be each others hermitian conjugate be@agdeermitian. Becaus® has only one
component this can be interpreted as a field describing a particle with spin zero. From this follows that the
commutation rules are given B (x), ®(a’)] = iA(x — a’) with

Aly) = 1 /sm(ky)ddk

(2m)3 W

A(y) is an odd function which is invariant for proper Lorentz transformations (no mirroring). This is consistent
with the previously found resul®(Z, ¢, ®(Z’,t)] = 0. In general holds thah(y) = 0 outside the light cone.
So the equations obey the locality postulate.

The Lagrange density is given bg{®, 9,®) = — (9,909, ® + m2®?). The energy operator is given by:

1
2

H:/’H(:c :cthwkaE (k)
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15.5 Charged spin-0 particles, conservation of charge

The Lagrange density of charged spin-0 particles is giventby: — (9, @0, ®* + M20d*).

Noether's theorem connects a continuous symmetr{ @fnd an additive conservation law. Suppose that
L((®2),0,(®*)) = L (®*,9,9*) and there exists a continuous transformation betwigeand®*’ such

as®™’ = & + ¢f*(®). Then holds
) oL ..\
o (g ) =

This is a continuity equatios>- conservation law. Which quantity is conserved depends on the symmetry. The
above Lagrange density is invariant for a change in pldase ®c'’: a global gauge transformation. The
conserved quantity is the current densify(z) = —ie(®0,%* — ®*0,®). Because this quantity is O for real

fields a complex field is needed to describe charged particles. When this field is quantized the field operators
are given by

®(x (alf)e™ + i (B)e= ™) | @f(a (af()e 4 b(E ye )

1 1 1 1
=W T R e

Hence the energy operator is given by:

H=Y hu (aT(E)a(E) + bT(E)b(E))
E

and the charge operator is given by:

From this follows thatfa := N+(E) is an occupation number operator for particles with a positive charge
andb’s := N_ (k) is an occupation number operator for particles with a negative charge.

15.6 Field functions for spin- particles

Spin is defined by the behaviour of the solutianf the Dirac equation. Acalarfield ® has the property
that, if it obeys the Klein-Gordon equation, the rotated fi@ld:) := ®(A~1z) also obeys it. A denotes
4-dimensional rotations: the proper Lorentz transformations. These can be written as:

b(x) = @(x)e*mf with L, = —ih (“””“a% - xya%)
v Iz

Foru < 3,v < 3 these are rotations, for= 4, u # 4 these are Lorentz transformations.

A rotated fieldy) obeys the Dirac equation if the following condition holdé(a:) = D(A)y(A~1z). This
results in the conditio® ~'y,\D = Ay,7,. One finds:D = e"* with S,,, = —i3%7,v,. Hence:

7])(:5) _ efi(SJrL)w(x) _ efi.]w(:w
Then the solutions of the Dirac equation are given by:
Pla) = (§)e”PIEEY

Here, r is an indication for the direction of the spin, addis the sign of the energy. With the notation
v"(p) = u (—p’) andu” (p') = u’,(p') one can write for the dot products of these spinors:

T (A" (D E T2\, T (> E roN 1o
uly (P)uly (P) = M(S'M" , ul (p)ul () = Mdm-f , L (p)u”(p) =0
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Because of the factaE /M this is not relativistic invariant. A Lorentz-invariant dot product is defined by
@b := a’~4b, wherea := a'~, is a row spinor. From this follows:

/

wr (B’ () = by ()" (B) = —8r . w(F)0" (F) =0
Combinations of the typea give a4 x 4 matrix:

VT —iyapx + M o= A — M
S i) = S -

The Lagrange density which results in the Dirac equation and having the correct energy normalization is:
— 0
£(o) = =G (0 g+ M ) 1)

and the current density i§, (z) = —iely,.

15.7 Quantization of spini fields

The general solution for the fieldoperators is in this case:

9=\ 7 g E e o o) o)
and
(@) = @ > % > (@) (@)e " + dn()or (5)e™)

Here,c' andc are the creation respectively annihilation operators for an electron’aaddd the creation
respectively annihilation operators for a positron. The energy operator is given by

i = ZE~Z () — dr (7))

r=1

To prevent that the energy of posnrons is negative the operators must obey anti commutation rules in stead of
commutation rules:

(7). el (7)) 4 = [dv(7),d" (7)]4 = 6,446, , all other anti commutators are 0.
The field operators obey

[Ya (@), ¥s(2)] =0, [Ya(@),p(a)] =0, [al(@),Ys(@)] = —iSap(x — ')

with S(z) = (%% - M) Alz)

The anti commutation rules give besides the positive-definite energy also the Pauli exclusion principle and the
Fermi-Dirac statistics: becausf(p)cl.(5) = —cl(p)cl(p) holds:{cl(p)}? = 0. It appears to be impossible

to create two electrons with the same momentum and spin. This is the exclusion principle. Another way to see
this is the fact thaf Nt (7)}2 = N, (7): the occupation operators have only eigenvalues 0 and 1.

To avoid infinite vacuum contributions to the energy and chargash@al producis introduced. The expres-
sion for the current density now becomgs= —ieN (1v,%). This product is obtained by:

e Expand all fields into creation and annihilation operators,

o Keep all terms which have no annihilation operators, or in which they are on the right of the creation
operators,

¢ In all other terms interchange the factors so that the annihilation operators go to the right. By an inter-
change of two fermion operators add a minus sign, by interchange of two boson operators not. Assume
hereby that all commutators are zero.
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15.8 Quantization of the electromagnetic field
LA, DA,

29z, Oz,

Starting with the Lagrange densify/=

it follows for the field operatorsl (z):

1
Z (am(lz)em(l;)eikw + aT(E)E’rrz(E)*e—ikx)
m=1

1 1
A= T 2

The operators obeyzm(l_é), a,fn, (E)] = Omm Ork. All other commutators are Om gives the polarization

direction of the photon:m = 1,2 gives transversal polarizedh = 3 longitudinal polarized andn = 4
timelike polarized photons. Further holds:

[Au(x), Ay (m/)] = iéle(x - m/) with D(y) = A(?J)|7n=0

In spite of the fact thatd, = iV is imaginary in the classical casd, is still defined to be hermitian be-
cause otherwise the sign of the energy becomes incorrect. By changing the definition of the inner product in
configuration space the expectation values4pp 3 (x) € IR and forA4(z) become imaginary.

If the potentials satisfy the Lorentz gauge conditgd,, = 0 the £ and B operators derived from these
potentials will satisfy the Maxwell equations. However, this gives problems with the commutation rules. Itis
now demanded that only those states are permitted for which holds

dAF
=|®) =0
Ox,,

This results in: <aA” > =0.
Oz,

From this follows thatas(k ) — as(k))|®) = 0. With a local gauge transformation one obtaMg(k ) = 0

and N4(k) = 0. However, this only applies to free EM-fields: in intermediary states in interactions there
can exist longitudinal and timelike photons. These photons are also responsible for the stationary Coulomb
potential.

15.9 Interacting fields and the S-matrix

The S(scattering)-matrix gives a relation between the initial and final states of an interapfiés:)) =
S|®(—o00)). If the Schodinger equation is integrated:

B(t)) = |9(—00)) — i / Hine (1) (1))t

—00

and perturbation theory is applied one finds that:

S nz::o 1 / /T{Hlnt( 1) Hint(zn)} d 21 -+ d "*ZS

n

n=0

Here, thel'-operator meanstime-ordered productthe terms in such a product must be ordered in increasing
time order from the right to the left so that the earliest terms act first. SFheatrix is then given bysS;; =
(@] S|®5) = (Pi|P(c0)).

The interaction Hamilton density for the interaction between the electromagnetic and the electron-positron
field is: Hine(2) = —J,(2) AL (x) = ieN (Yy,vA,)

When this is expanded at;, = ieN (@F + D )y ) (A + A;))
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eight terms appear. Each term corresponds with a possible process. Thfm;?m;w*A; acting on|®)

gives transitions wherd ; creates a photon;* annihilates an electron angdr annihilates a positron. Only
terms with the correct number of particles in the initial and final state contribute to a matrix el@eHitd ;).
Further the factors ift{;,;, can create and thereafter annihilate particlesvitiaal particles

The expressions fa$(™) contain time-ordered products of normal products. This can be written as a sum of
normal products. The appearing operators describe the minimal changes necessary to change the initial state
into the final state. The effects of the virtual particles are described by the (anti)commutator functions. Some
time-ordened products are:

T{®(z)®(y) NA{®(x)®(y)} + 547 (z —y)

}
T{va(@is)} = N{va@isl)} - 15— 1)
T{A@A )} = N{A@)A W)} + 100 Dh (@ —y)

Here,S¥ (z) = (v,0, — M)AF (z), D¥ () = A¥ (2)],,—0 and

1 ikx i )
/e Bk ifxg >0

2r)? ) wg
Af(z) =
1 efikx 5 ]
(%)3/ ok e <0

The term$AF (z — y) is called the contraction 6b(z) and®(y), and is the expectation value of the time-
ordered product in the vacuum state. Wick’s theorem gives an expression for the time-ordened product of
an arbitrary number of field operators. The graphical representation of these processes afeyaiteth
diagrams In thez-representation each diagram describes a number of processes. The contraction functions
can also be written as:

—2i etk —2i iy — M
AF(z) = lim d*k and S¥ lim / ipr __IHEH T g4
() e—0 (2m)* / k2 +m?2 —ie () = o8 (2m)t (2m)* ¢ P2+ M2 — e P

In the expressions fa$(?) this gives rise to term&(p + k — p’ — k’). This means that energy and momentum
is conserved. However, virtual particles do not obey the relation between energy and momentum.

15.10 Divergences and renormalization

It turns out that higher orders contribute infinite terms because only theysuih of the four-momentum of
the virtual particles is fixed. An integration over one of them becowsedn the z-representation this can
be understood because the product of two functions contadriikg singularities is not well defined. This is
solved by discounting all divergent diagrams in a renormalizatieresfd M . It is assumed that an electron, if
there would not be an electromagnetical field, would have a thissnd a charge, unequal to the observed
massM and charge. In the Hamilton and Lagrange density of the free electron-positron field appgars
So this gives, with\/ = My + AM:

Lep(x) = _M(%taﬂ + Mo)y(x) = _M(%ﬁ;t + M)p(x) + AMMQM@
andHine = ieN (Yy,pA,) — iDeN Py A,).

15.11 Classification of elementary particles
Elementary particles can be categorized as follows:
1. Hadrons: these exist of quarks and can be categorized in:

I. Baryons: these exist of 3 quarks or 3 antiquarks.
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Il. Mesons:these exist of one quark and one antiquark.
2. Leptons: €, u*, 7%, ve, vy, Vs, Ve, Uy, U
3. Field quanta: v, W%, Z°, gluons, gravitons (?).

An overview of particles and antiparticles is given in the following table:

| Particle | spin()B L T T, S C B charge¢) mg(MeV) | antipart.|

u 1/2 13 0 12 1/2 0O 0 O +2/3 5 T

d /2 113 0 12 -1/2 0 0 O —-1/3 9 d

s 1/2 1/3 0 0 0O -1 0 0 -1/3 175 3

(o /2 1/3 0 O 0 0O 1 O +2/3 1350 C

b /2 1/3 0 O 0 0O 0 -1 -1/3 4500 b

t /2 1/3 0 O 0 0O 0 O +2/3 173000 t
e /2 0 1 O 0 0O 0 O -1 0.511 et
uw /2 0 1 O 0 0O 0 O -1 105.658| uT
T /2 0 1 O 0 0O 0 O -1 1777.1 T+

Ve /2 0 1 O 0 0O 0 O 0 0o(? Ve

Yy /2 0 1 O 0 0O 0 O 0 0?) 7,

vy /2 0 1 O 0 0O 0 O 0 0?7} 7,

y 1 0 0 O 0 0O 0 O 0 0 0
gluon 1 0 0 O 0 0 0 O 0 0| gluon
W+ 1 0 0 O 0 0O 0 O +1 80220 W~

z 1 0 0 0O 0 0O 0 O 0 91187 z

graviton 2 0 0 O 0 0O 0 O 0 0 | graviton

Here B is the baryon number and L the lepton number. It is found that there are three different lepton numbers,
one for e, andr, which are separately conserved. T is the isospin, Witthe projection of the isospin on

the third axis, C the charmness, S the strangeness ardeBbottomness. The anti particles have quantum
numbers with the opposite sign except for the total isospin T. The composition of (anti)quarks of the hadrons
is given in the following table, together with their mass in MeV in their ground state:

70 | 4V2(un+dd) 134.9764 || JA | ¢ 3096.8 >+ | dds 1197.436
xt ud 139.56995| T bb  9460.37 = uss 1314.9
T da 139.56995|| p* | uud  938.27231| = Tss 1314.9
KO sd 497672 || p~ |uud 93827231 = | dss 1321.32
KO ds 497672 || n® |udd 939.56563 =+ | dss 1321.32
K+ us 493677 || o |uwdd 93956563 Q- | sss 1672.45
K- su 493677 || A | uds 1115684 | Qt | 555 1672.45
D+ cd 1869.4 A | uds 1115684 | A} |udc 2285.1
D~ de 1869.4 ¥t | uus 1189.37 A2 | wuu 1232.0
DO cu 1864.6 Y- | aus 1189.37 A%t | uuu 12320
DO uc 1864.6 ¥ | uds 1192.55 AT | uud 12320
F+ cs 1969.0 ¥ | wds 1192.55 AY | udd 12320
F- Ed 1969.0 ¥~ | dds 1197436 || A~ | ddd 12320

Each quark can exist in two spin states. So mesons are bosons with spin 0 or 1 in their ground state, while
baryons are fermions with spiiq or % There exist excited states with higher interfialNeutrino’s have a
helicity of —1 while antineutrino’s have only-1 as possible value.

The quantum numbers are subject to conservation laws. These can be derived from symmetries in the La-
grange density: continuous symmetries give rise to additive conservation laws, discrete symmetries result in
multiplicative conservation laws.

Geometrical conservation lavese invariant under Lorentz transformations and the CPT-operation. These are:

1. Mass/energy because the laws of nature are invariant for translations in time.
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2. Momentum because the laws of nature are invariant for translations in space.
3. Angular momentum because the laws of nature are invariant for rotations.
Dynamical conservation laware invariant under the CPT-operation. These are:
1. Electrical charge because the Maxwell equations are invariant under gauge transformations.
2. Colour charge is conserved.
3. Isospin because QCD is invariant for rotations in T-space.

4. Baryon number and lepton number are conserved but not under a possible SU(5) symmetry of the laws
of nature.

5. Quarks type is only conserved under the colour interaction.
6. Parity is conserved except for weak interactions.

The elementary particles can be classified into three families:

leptons| quarks| antileptons| antiquarks
1st generation| e~ d et d
Ve u Ve u
2nd generation  u~ s ut 3
Vy (o} vy, C
3rd generation| 7~ b rt+ b
vy t U, t

Quarks exist in three colours but because theycardinedthese colours cannot be seen directly. The color
force doesnot decrease with distance. The potential energy will become high enough to create a quark-

antiquark pair when it is tried to disjoin an (anti)quark from a hadron. This will result in two hadrons and not
in free quarks.

15.12 P and CP-violation

It is found that the weak interaction violates P-symmetry, and even CP-symmetry is not conserved. Some
processes which violate P symmetry but conserve the combination CP are:

1. p-decay:;n~ — e~ + v, + 7. Left-handed electrons appear more th&a60 x as much as right-handed
ones.

2. B-decay of spin-polarize® Co: ©°Co —6° Ni 4 e~ 4+ 7. More electrons with a spin parallel to the Co
than with a spin antiparallel are created: (paralkhtiparallel)/(total)=20%.

3. There is no connection with the neutrino: the decay ofAhgarticle through:A — p™ + 7~ and
A — 1n° + 7% has also these properties.

The CP-symmetry was found to be violated by the decay of neutral Kaons. These are the lowest possible states
with a s-quark so they can decay only weakly. The following hol@#") = ,|K°) where, is a phase factor.
Further holdsP|K") = —|K°) becausé&” andK" have an intrinsic parity of-1. From this follows thai®
andK? are not eigenvalues of CRP|K®) = |[K9). The linear combinations

KD) := 5v2([K") +[K?) and [K9) := 5v2(/K") - |K?))
are eigenstates of CRIP|KY) = +[K?) andCP|K)) = —|K3). A base ofK} andK} is practical while
describing weak interactions. For colour interactions a bas2 @ndK?O is practical because then the number
u—nhumberft is constant. The expansion postulate must be used for weak decays:

K%)= 3((KY[K") + (K5[K"))
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The probability to find a final state with GP —1 is 1| (K9|K®) |?, the probability of CP=+1 decay is

l| <K0|K0> |2_

2 1

The relation between the mass eigenvalues of the quarks (unaccented) and the fields arising in the weak currents
(accented) isu’, ¢/, t') = (u, ¢, t), and:

d 0 0 0 0 cosf; sinf; 0
s = cosfy sinfy 1 0 —sinf; cosf; O
v —sinfy cosbs 0 e 0 0 1

cosfs  sinfs
—sinf3 cosfs

STt QL O O+

1
0
0
1 0 0
0
0
61 = O¢ is theCabibbo anglesin(f¢) ~ 0.23 £+ 0.01.

15.13 The standard model

When one wants to make the Lagrange density which describes a field invariant for local gauge transformations
from a certain group, one has to perform the transformation

0 D 0 g

— =
oz, Dz, 0z, h H

Here theL; are the generators of the gauge group (the “charges”) anﬁﬁhﬂe the gauge fieldy; is the
matching coupling constant. The Lagrange density for a scalar field becomes:

L=—3(D,®*D"® + M*®*®) — 1 FS, Fi

and the field tensors are given by, = 8, A% — 9, A% + gcft, AL AT

fv

15.13.1 The electroweak theory

The electroweak interaction arises from the necessity to keep the Lagrange density invariant for local gauge
transformations of the group SURY(1). Right- and left-handed spin states are treated different because the
weak interaction does not conserve parity. If a fifth Dirac matrix is defined by:

0 01 0
0 0 0 1
V5 = V1727374 = — 100 0
01 0 0

the left- and right- handed solutions of the Dirac equation for neutrino’s are given by:

YL =3(1+7)¢ and yr = 1(1—5)0

It appears that neutrino’s are always left-handed while antineutrino’s are always right-handbglp&iluharge
Y, for quarks given by = B + S + C 4 B* 4 T, is defined by:

Q=3Y+T;

solY, Ti] = 0. The group U(1) ®SU(2); is taken as symmetry group for the electroweak interaction because
the generators of this group commute. The multiplets are classified as follows:

€y | veL € | UL dp | Ur | dr
T |0 i i 0 0
T, 0|3 -1|5-4|o]o0
v|-2| -1 | 4 | 4]-3
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Now, 1 field B, (z) is connected with gauge group U(1) and 3 gauge fiél’g@:) are connected with SU(2).
The total Lagrange density (minus the fieldterms) for the electron-fermion field now becomes:

Comw =~ o (0, — 104, (30) — i B (1)) (Y ) -

YerY" (au - %i%(Z)Bu) Yer

Here, ;G are the generators @f and—1 and—2 the generators df .

15.13.2 Spontaneous symmetry breaking: the Higgs mechanism

All leptons are massless in the equations above. Their mass is probably genergpamtaneous symmetry
breaking This means that the dynamic equations which describe the system have a symmetry which the ground
state does not have. It is assumed that there exists an isospin-doublet of scaldr Viithiglectrical charges

+1 and 0 and potentidf (®) = —p2®*® + A\(®*®)2. Their antiparticles have charged and 0. The extra

terms inL arising from these field; = (D, ®)* (D} ®) — V(®), are globally U(1pSU(2) symmetric.

Hence the state with the lowest energy corresponds with the ®tate®(z) = v = u?/2\ =constant.

The field can be written (were® andz are Nambu-Goldstone bosons which can be transformed away, and
mg = pv/2) as:

0= (30 )= (o iy ) oo =,z )

Because this expectation valge0 the SU(2) symmetry is broken but the U(1) symmetry is not. When the
gauge fields in the resulting Lagrange density are separated one obtains:

W, o= $3V2(AL+iA%) | WP = V24 —iA?)
9A3 - g/Bu < .
Z, = ﬁ = A, cos(fw) — By, sin(fw)
A, = TLu T 97n A% sin(fw) + By, cos(fw)

wheredyy is called theWeinberg angle For this angle holdssin?(fw) = 0.255 4 0.010. Relations for the
masses of the field quanta can be obtained from the remaining téfims= %Ug andMy = %U«/gQ + g2,

/

g9
/92 + 912
Experimentally it is found thad/y = 80.022 + 0.26 GeV/& andMz = 91.187 4+ 0.007 GeV/E&. According
to the weak theory this should b&fy = 83.0 + 0.24 GeV/& and Mz = 93.8 + 2.0 GeV/E.

and for the elementary charge holds= = ¢’ cos(fw) = gsin(Ow)

15.13.3 Quantumchromodynamics

Coloured particles interact because the Lagrange density is invariant for the transformations of the group SU(3)
of the colour interaction. A distinction can be made between two types of particles:

1. “White” particles: they have no colour charge, the genelﬁtecr 0.

2. “Coloured” particles: the generatdeare 83 x 3 matrices. There exist three colours and three anti-
colours.

The Lagrange density for coloured particles is given by
Locp =iy Uey"DyWy + Y WMy W, — 1F, FIY
k k,l

The gluons remain massless because this Lagrange density does not contain spinless particles. Because left-
and right- handed quarks now belong to the same multiplet a mass term can be introduced. This term can be
broughtin the form\f;; = mydg;.
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15.14 Path integrals

The development in time of a quantum mechanical system can, besides witdiagers equation, also be
described by @ath integral(Feynman):

vl ) = [t tte s

in which F'(2/, ¢, x, t) is the amplitude of probability to find a system on tithén 2’ if it was in = on timet.

Then, Pt at) = /exp (@) d[z]
U, T, h

whereS[z] is an action-integralS[z] = [ L(x,4,¢)dt. The notationd[z] means that the integral has to be

taken over all possible patf[xs]:
/ [ ] =1l —1 | | / (f' )
alx| : 'rLlnoo N . dr n

in which V is a normalization constant. To each path is assigned a probability amplitpdes /7). The
classical limit can be found by takingS = 0: the average of the exponent vanishes, except where it is
stationary. In quantum fieldtheory, the probability of the transition of a fieldopeddtir—oo) to &'(#, co)

is given by -
F(#/(7,00), 8(7,~o0)) = [ exp <#> a[®)

with the action-integral
S[®@] :/E(@,GV(I))CZ%
Q

15.15 Unification and quantum gravity

The strength of the forces varies with energy and the reciprocal coupling constants approach each other with
increasing energy. The SU(5) model predicts complete unification of the electromagnetical, weak and colour
forces atl0'°GeV. It also predicts 12 extra X bosons which couple leptons and quarks and are i.g. responsible

for proton decay, with dominant channet — #° + e*, with an average lifetime of the proton 063! year.

This model has been experimentally falsified.

Supersymmetric models assume a symmetry between bosons and fermions and predict partners for the cur-
rently known particles with a spin which diffe% The supersymmetric SU(5) model predicts unification at
10'5GeV and an average lifetime of the protonléf? year. The dominant decay channels in this theory are

pm — K" +7,andp™ — K"+ uT.

Quantum gravity plays only a role in particle interactions at the Planck dimensions, WwheteRs: mp; =
Vhe/G = 3-10' GeV,tp) = h/mpic? = \/hG/c® = 10743 sec and'p; = ctp; ~ 10735 m.




Chapter 16

Astrophysics

16.1 Determination of distances

The parallax is mostly used to determine distances in nearby space. The parallax is the angular difference
between two measurements of the position of the object from different view-points. If the annual parallax is
given byp, the distancer of the object is given by® = a/ sin(p), in whicha is the radius of the Earth’s orbit.

The clusterparallaxis used to determine the distance of a group of stars by using their motion w.r.t. a fixed
background. The tangential velocity and the radial velocity, of the stars along the sky are given by

v =Vcos(d) , v =Vsin(d) =wR

-5 T T T T T
whered is the angle between the star and fiuént of convergencand R the -4+ g
distance in pc. This results, with = v, tan(), in: ()3 T Type 1
vy tan(é . " -2 7
R:#:R:? _l L Typ62_
O -
wherep is the parallax in arc seconds. The parallax is then given by X — RR-Lyrae
0,10,31 3 10 30100
4,741 O
= P (days
P vy tan(0) (days)-—

with ¢ de proper motion of the star iffyr. A method to determine the distance of objects which are somewhat
further away, like galaxies and star clusters, uses the period-Brightness relation for Cepheids. This relation is
shown in the above figure for different types of stars.

16.2 Brightness and magnitudes

Thebrightnesss the total radiated energy per unit of time. Earth receiyes 1.374 kW/m? from the Sun.
Hence, the brightness of the Sun is givenlhy = 47r2sy, = 3.82 - 102 W. It is also given by:

Lo = ATR% / TF,dv

0

wherer F, is the monochromatic radiation flux. At the position of an observer thigiswith f, = (R/r)?F,
if absorption is ignored. I, is the fraction of the flux which reaches Earth’s surface, the transmission factor
is given byR, and the surface of the detector is givenday?, then the apparent brightndsis given by:

b= 7ra2/f,,Al,R,,d1/
0

Themagnituden is defined by:

1

— = (100)5(m2=m1) = (2,512)m2"m™
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because the human eye perceives lightintensities logaritmical. From this follows:thatm; = 2.5 .19
log(by/b2), or:m = —2.5 -19 log(b) + C. The apparent brightness of a star if this star would be at a distance
of 10 pc is called theabsolute brightnes®3: B/b = (#/10)2. The absolute magnitude is then given by
M = —2.5-1og(B)+ C, or: M = 5+m —5-191og(#). When an interstellar absorption tf —*/pc is taken
into account one finds:

M= (m—4-107%) 45— 5-1log(#)

If a detector detects all radiation emitted by a source one would measuabgbkite bolometric magnitude
If the bolometric correctionBC' is given by

Energy flux receive [ fudv
BC =25-19] — 9510y ( LI
¢ b+ log (Energy flux detecte 5+ log [ fLA R, dv

holds: M, = My — BC whereMy is the visual magnitude. Further holds

L
M, = —2.5-19log (L—) +4.72
©

16.3 Radiation and stellar atmospheres

The radiation energy passing through a surfdeeis dE = I,(6, ) cos(8)dvdddAdt, wherel, is the
monochromatical intensitpVm—2sr—'Hz~!]. When there is no absorption the quantityis independent
of the distance to the source. Planck’s law holds for a black body:

I(T) = B,(T) = iwy(T) = Qizy exp(hz//lkT) -1

The radiation transport through a layer can then be written as:

dl,

:_Iu v 'u
ds v 7

Here, j, is thecoefficient of emissioandx, the coefficient of absorptian| ds is the thickness of the layer.

Theoptical thickness,, of the layer is given by, = [ ,ds. The layer is optically thin ifr, < 1, the layer
is optically thick if r, > 1. For a stellar atmosphere in LTE holds: = , B, (T'). Then also holds:

I,(s) =1,(0)e™™ + B,(T)(1 —e™™)

16.4 Composition and evolution of stars

The structure of a star is described by the following equations:

djgy) = dmo(r)r®
) __GM(jelr)
dr o 7,,2
Ld(:) = dmo(r)e(r)r®
) 3L0) () |
<7)wd T 442 40T3(r) (Eddington), or
(dj(;r)) = Z((:)) ’YTle;(:) , (convective energy transport)

Further, for stars of the solar type, the composing plasma can be described as an ideal gas:

~ o(r)kT(r)
p(r) = T
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wherey is the average molecular mass, usually well approximated by:

o 1
nmy _2X+%Y+%Z

M:

whereX is the mass fraction of Hy the mass fraction of He and the mass fraction of the other elements.
Further holds:

k(r) = f(o(r), T(r),composition and e(r) = g(o(r), T(r),composition

Convection will occur when the star meets the Schwartzschild criterium:

ary - _(dT
dr conv dr rad

Otherwise the energy transfer takes place by radiation. For stars in quasi-hydrostatic equilibrium hold the

approximations = 1R, M(r) = §M, dM/dr = M/R, k ~ ¢ ande ~ oT* (this last assumption is only

valid for stars on the main sequence). For pp-chains hokdss and for the CNO chains holds= 12 tot 18.
It can be derived that ~ A3: themass-brightness relatiorfFurther holdsiL ~ R* ~ T&,. This results in

the equation for the main sequence in the Hertzsprung-Russel diagram:

Wog(L) = 8 -1 log(Twq) + constant

16.5 Energy production in stars

The net reaction from which most stars gain their energyigt — “He + 2e* + 2v, + 7.
This reaction produces 26.72 MeV. Two reaction chains are responsible for this reaction. The slowest, speed-
limiting reaction is shown in boldface. The energy between brackets is the energy carried away by the neutrino.

1. The proton-proton chain can be divided into two subchains:
1H+4+ pt — 2D + et 4 v, and the?D + p — 3He + 7.
I. ppl:3He +3 He — 2p™ + *He. There is 26.21 + (0.51) MeV released.
Il. pp2:3He + a — "Be +
i. "Be+e~ — "Li+ v, thenLi + pt — 2%*He + ~. 25.92 + (0.80) MeV.
ii. "“Be+pt — 8B+, then®B + e — 24He + 7. 19.5 + (7.2) MeV.
Both "Be chains become more important with raisifig

2. The CNO cycle. The first chain releases 25.03 + (1.69) MeV, the second 24.74 + (1.98) MeV. The
reactions are shown below.

—

Vs —~  BN4pt sa42C BN 4 pt — 160 4~
150 fet — BN47 120+p+l—>13N+7 16O+p+l—>17F+7
UN 4 pt — 150 4+~ 13N 13é+e*+y R, 17é+e*+y
N - 13C+p+l—>14N+7 17O+p+l—>a+14N

— 7
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The V-operator

In cartesian coordinatés, y, z) holds:

= 0 o o afq 8f_, af .
V=— aIC €r + ay€y+ azez , gradf = Vf* €z + ay y T 02 €z
L _,  Oa,  Oay,  Oa. 2, f 82f 62f
diva=V-a= oz 2y s Vif= 2 622
ot = X~ 8az 8ay aax B aaz % B dag z.
or dy
In cylinder coordinateér, ¢, z) holds.
- d_, 10 o af_, 1 afq of
€r z df = a_Cz
V= or +r6<p +826 gradf = 7“8(,0 Jr@ze
2 2 2
diva,:é?ar ar l% da, , V2f:8_f lﬂ ia_f 8_f
or r Op 0z or2  ror 12002 022
ot & — laazi% &t aaric()az P % a_q,ilaar z
\r dp 0z " 0z or ) ¥ or r rop ) *
In spherical coordinatgs, 6, ¢) holds:
- 0 10 1 0,
Vo= or T+_% & rsin@%%
8fq 18fq 1 of .
d = L - 7
gradf 87“ rt 69 rsin 6 &pe(p
divd — Oa, 2a, 1% ag 1 %
v - Or r r 00  rtanf rsin€ Oy
L 1 0a, ag 1 Oag) _ 1 Oda, Oa, ay)\
rota = (r 00  rtanf rsind acp)er—’— (rsin@ Oy or r ot
Jdag a_.g B laa, p
or r 00
0%f 26f 1 82f 1 of 1 0%f
2 —_— — —— — — — —
vy o2 " ror V200t P rand o0 2 sin” § Op?

General orthonormal curvelinear coordingtesv, w) can be obtained from cartesian coordinates by the trans-
formation® = Z(u, v, w). The unit vectors are then given by:

S i@_ﬂ? . 104 1 or
Cu = hiOu’ o= ho OV’ Cw h3 w
where the factors; set the normto 1. Then holds:
radf = 18fq 18f_, 18fq
& T au he 9w hy aw
diva = h1h2h3 ( h2h3au v (h?)hla'u) ow (h1h2a’w))
. 1 8 h3aw) 8(h2av s hlau h3aw) -
t = - - v
rota h2h3 ( ow hghl ou vt
1 8(h2a7j) . 8(h1au) g
h1h2 é)u 61} v
1 0 (hshsd 0 [ hshy 0 hihs O
Vi = 0 (hahs Of L9 (hs 10f L9 (I 2 0f
hihshs |Ou \ hy Ou ov hy Ov 8w hs Ow




100 The SI units
The Sl units
Basic units Derived units with special names
[ Quantity | Unit Sym. || [ Quantity | Unit Sym. Derivation ||
Length metre m Frequency hertz Hz s!
Mass kilogram kg Force newion N  kg-m-s 2
Time second S Pressure pascal Pa N-m™2
Therm. temp. kelvin K Energy joule J N-m
Electr. current ampere A Power watt W J.-s !
Luminous intens.| candela cd Charge coulomb C A-s
Amount of subst.| mol mol El. Potential volt \Vi W- AL
_ El. Capacitance | farad F Cc-v!
Extra units El. Resistance | ohm Q V-ATl
Plane angle radian rad El. Conductance | siemens S AVl
solid angle sterradian  sr Mag. flux weber Wb V-s
Mag. flux density| tesla T Wb -m™2
Inductance henry H Wb - A1
Luminous flux lumen Im cd - sr
llluminance lux Ix Im - m~?
Activity bequerel Bgq s!
Absorbed dose | gray Gy J-kg!
Dose equivalent | sievert Sv J- kgt
Prefixes
exa E 10 |mega M 10 |deci d 107! |nano n 107°
peta P 10" | kilo k 103 [centi ¢ 1072 |pico p 10712
tera T 102 | hecto h 10 | milli m 1073 | femto f 10°1°
giga G 10° | deca da 10 | micro p 1076 | atto a 10718




