EM1B: consider an infinitely long transmission line consisting of two perfectly conducting wires running parallel to the x axis at $y=0$, and $y=a>0$ and separated by a dielectric. The wires have capacitance C per unit length and inductance L per unit length. In this problem the longitudinal components E_{x} and B_{x} both vanish everywhere, so we are examining transverse electromagnetic (TEM) waves.

a) Let $V(x, t)$ be the position- and time-dependent EMF between the wires that is defined by evaluating

$$
V(x, t)=-\int_{0}^{a} E_{y}(x, y, t) d y
$$

along a straight path between the wires at fixed x. Show that

$$
\frac{\partial V}{\partial x}=\kappa \frac{\partial I}{\partial t}
$$

for some constant κ depending on L and/or C that you should find. Here $I(x, t)$ is the current at x in the lower $(y=0)$ wire. The current at x in the upper $(y=a)$ wire has the same magnitude, but opposite direction.
b) By using the charge continuity equation, derive a similar relation between $\partial V / \partial t$ and $\partial I / \partial x$.
c) Combine the differential equations from parts (a) and (b) to obtain a wave-equation for $I(x, t)$, and express the wave velocity $c_{\text {TEM }}$ in terms of L and C.
d) If $I(x, t)=I_{0} \sin \left(k x-c_{\text {TEM }} t\right)$ what is $V(x, t)$?
e) By what factor will the RMS power transmitted by the line change when L is increased by a factor of 10 while keeping I_{0} fixed.

