\mathbf{QMA} : Consider the quantum mechanics of a particle of mass m in a 3-dimensional isotropic harmonic oscillator potential and governed by the Hamiltonian

$$H_0 = \frac{1}{2m} \left(p_x^2 + p_y^2 + p_z^2 \right) + \frac{1}{2} m \omega^2 \left(x^2 + y^2 + z^2 \right),$$

where ω is a positive constant.

- a) Write down (no calculation required) the energies of the three lowest distinct energy levels of H_0 and state their degeneracy.
- b) Suppose this system is perturbed by the potential

$$V = \lambda m \omega xy$$
, where $\lambda > 0$.

Find the physical constraint on λ required for the energy to be bounded from below.

- c) Show that a suitable rotation of the axes reduces the problem to that of three uncoupled oscillators and hence write down an *exact* expression for the energy spectrum of $H = H_0 + V$.
- d) Assuming $0 < \lambda \ll 1$, use perturbation theory to find the shift in the ground state energy to first order in λ .
- e) Take the limit of your answer from part (c) as $\lambda \to 0$ and compare your answer with your perturbation calculation from part (d). Do they agree? If not why not?

Hint: You may use without proof the usual relations between position/momentum and creation/annihilation operators

$$x = \sqrt{\frac{\hbar}{2m\omega}} \left(a_x + a_x^{\dagger}\right) \text{ and } p_x = i\sqrt{\frac{m\hbar\omega}{2}} \left(-a_x + a_x^{\dagger}\right),$$

and similarly for y, p_y and z, p_z .