QM A: Consider the quantum mechanics of a particle of mass m in a 3-dimensional isotropic harmonic oscillator potential and governed by the Hamiltonian

$$
H_{0}=\frac{1}{2 m}\left(p_{x}^{2}+p_{y}^{2}+p_{z}^{2}\right)+\frac{1}{2} m \omega^{2}\left(x^{2}+y^{2}+z^{2}\right),
$$

where ω is a positive constant.
a) Write down (no calculation required) the energies of the three lowest distinct energy levels of H_{0} and state their degeneracy.
b) Suppose this system is perturbed by the potential

$$
V=\lambda m \omega x y, \text { where } \lambda>0 .
$$

Find the physical constraint on λ required for the energy to be bounded from below.
c) Show that a suitable rotation of the axes reduces the problem to that of three uncoupled oscillators and hence write down an exact expression for the energy spectrum of $H=H_{0}+V$.
d) Assuming $0<\lambda \ll 1$, use perturbation theory to find the shift in the ground state energy to first order in λ.
e) Take the limit of your answer from part (c) as $\lambda \rightarrow 0$ and compare your answer with your perturbation calculation from part (d). Do they agree? If not why not?
Hint: You may use without proof the usual relations between position/momentum and creation/annihilation operators

$$
x=\sqrt{\frac{\hbar}{2 m \omega}}\left(a_{x}+a_{x}^{\dagger}\right) \text { and } p_{x}=i \sqrt{\frac{m \hbar \omega}{2}}\left(-a_{x}+a_{x}^{\dagger}\right),
$$

and similarly for y, p_{y} and z, p_{z}.

