CMB: Consider a point particle of mass m subject to a gravitational force $-mg\hat{z}$ and constrained to move on the 2-dimensional frictionless surface of a lower hemisphere of radius R centered at the origin.

- a) Write down the Lagrangian for the problem, and from it find the Euler-Lagrange equations for the motion of the particle in r, θ, ϕ spherical coordinates.
- b) The particle is orbiting the hemisphere at a constant polar angle θ_0 with respect to the z-axis, where $\pi/2 < \theta_0 < \pi$. At time t = 0, the particle is at $(r, \theta, \phi) = (R, \theta_0, 0)$ and its velocity is in the $+\hat{\phi}$ direction. Find the coordinates of the particle for t > 0.
- c) Suppose the orbiting particle in part (b) is given an instantaneous impulse in the $-\hat{\theta}$ direction such that the resulting trajectory reaches the minimum polar angle θ_1 , where $\pi/2 < \theta_1 < \theta_0$. Find the equation that describes the maximum polar angle θ_2 that the particle can take. Do not attempt to solve the equation for θ_2 .
- d) In part (c), if you assume that $|\theta_1 \theta_0| \ll 1$, then you can linearize one of the Euler-Lagrange equations as a harmonic oscillator equation for θ around θ_0 . Find the frequency of this oscillation.