CM1 : consider a point particle of mass m subject to a gravitational force $-m g \hat{\mathbf{z}}$ and constrained to move on the 2-dimensional frictionless surface of a lower hemisphere of radius R centered at the origin.

a) Write down the Lagrangian for the problem, and from it find the EulerLagrange equations for the motion of the particle in r, θ, ϕ spherical coordinates.
b) The particle is orbiting the hemisphere at a constant polar angle θ_{0} with respect to the z-axis, where $\pi / 2<\theta_{0}<\pi$. At time $t=0$, the particle is at $(r, \theta, \phi)=\left(R, \theta_{0}, 0\right)$ and its velocity is in the $+\hat{\phi}$ direction. Find the coordinates of the particle for $t>0$.
c) Suppose the orbiting particle in part (b) is given an instantaneous impulse in the $-\hat{\theta}$ direction such that the resulting trajectory reaches the minimum polar angle θ_{1}, where $\pi / 2<\theta_{1}<\theta_{0}$. Find the equation that describes the maximum polar angle θ_{2} that the particle can take. Do not attempt to solve the equation for θ_{2}.
d) In part (c), if you assume that $\left|\theta_{1}-\theta_{0}\right| \ll 1$, then you can linearize one of the Euler-Lagrange equations as a harmonic oscillator equation for θ around θ_{0}. Find the frequency of this oscillation.

