CMA Three identical blocks of mass m slide on a frictionless horizontal surface and are constrained to move only along the \hat{x} axis. Identical linear springs of strength $k \equiv \omega_{0}^{2} m$ connect the blocks.

At time $t=0$, the blocks are at rest and the springs are at their unstretched lengths. Let x_{1}, x_{2}, and x_{3} represent the deviations of the blocks' positions from their locations at $t=0$. At times $t>0$, an external force

$$
F(t)=f m \cos \omega t
$$

is applied to block \#1. Here f and ω are constants. Your task is to figure out the motion $x_{3}(t)$ of block $\# 3$ for times $t>0$.

The equations of motion of the blocks decouple when they are written in terms of the coordinates $\xi_{1}, \xi_{2}, \xi_{3}$, which are the normal coordinates of the system. Two of the normal coordinate are:

$$
\xi_{1}=x_{1}+x_{2}+x_{3}, \quad \text { and } \quad \xi_{2}=x_{1}-x_{3} .
$$

a) Find the third normal coordinate, ξ_{3},
b) Find the decoupled equations of motion of the system,
c) Find the position $x_{3}(t)$ of block $\# 3$ for times $t>0$.

