CMA: Three identical blocks of mass m slide on a frictionless horizontal surface and are constrained to move only along the \hat{x} axis. Identical linear springs of strength $k \equiv \omega_0^2 m$ connect the blocks.

At time t = 0, the blocks are at rest and the springs are at their unstretched lengths. Let x_1 , x_2 , and x_3 represent the deviations of the blocks' positions from their locations at t = 0. At times t > 0, an external force

$$F(t) = f m \cos \omega t$$

is applied to block #1. Here f and ω are constants. Your task is to figure out the motion $x_3(t)$ of block #3 for times t > 0.

The equations of motion of the blocks decouple when they are written in terms of the coordinates ξ_1 , ξ_2 , ξ_3 , which are the *normal coordinates* of the system. Two of the normal coordinate are:

$$\xi_1 = x_1 + x_2 + x_3$$
, and $\xi_2 = x_1 - x_3$.

- a) Find the third normal coordinate, ξ_3 ,
- b) Find the decoupled equations of motion of the system,
- c) Find the position $x_3(t)$ of block #3 for times t > 0.