

Nuclear Physics at UIUC:

Getting to the heart of (the) matter

JORGE NORONHA (on behalf of the Nuclear Physics Group)

Open House Nuclear Physics Seminar – March 2020

Standard Model of Particle Physics

Cosmic Pie Chart

2

Fundamental Forces of Nature

Interaction	Theory	Mediator	Strength	Range (m)
Strong Force	Quantum Chromodynamics (QCD)	Gluons	10 ³⁸	10 ⁻¹⁵ (nucleus size)
Electromagnetic	Quantum Electrodynamics (QED)	Photons	10 ³⁶	Infinity
Weak	Electroweak Theory (EW)	W and Z bosons	10 ²⁵	10 ⁻¹⁸
Gravitation	General Relativity (GR)	Gravitons?	1	Infinity

Main Tool: Quantum Field Theory

- Special Relativity + Quantum Mechanics
- Gauge symmetry as underlying principle

Physics at the Smallest Scales

Natural Units: $\hbar = c = 1$ i.e. $E = Mc^2 \rightarrow E = M$ 1 Femtometer [fm] = 10^{-15} [m] 1 [GeV] = 1000 Megaelectron-volt [MeV] = 11 billion [K] 1 [MeV] = 1.79×10^{-30} [kg]

Nuclear Experiment Faculty

Prof. D. Beck

Prof. J-C. Peng

Prof. N. Makins

Head of Physics Department

Prof. M. G.

Perdekamp

Prof. A. Sickles

Fundamental	Nucleon	Nucleon	Heavy Ion	Heavy Ion
Symmetries	Structure	Structure	Collisions	Collisions
Neutron EDM	Reactor Neutrino Physics	Nucleon Spin	Nucleon Spin	Quark-Gluon Plasma

Jet Physics

Current Nuclear Physics Laboratory Research Staff

Faculty

Doug Beck Paul Debevec (R) Naomi Makins Alan Nathan (R) Jen-Chieh Peng Matthias Perdekamp Anne Sickles

Visiting Scholars

Jaako Koivuniemi Dipanwita Banerjee Fabrice Gautheron

Research Physicists

Caroline Riedl Steve Williamson

Postdocs

Vincent Andrieux Andrew Chen Yongsun Kim Riccardo Longo Marco Meyer Tim Rinn Sebastian Tapia

Technical Support

John Blackburn Clayton Curry Javad Khusro Peter Sobel Eric Thorsland Adam Wehe **Graduate Students**

Anabel Romero-Hernandez April Townsend Aric Tate **Blake Frickson Bryan Kerns** Chad Lantz **Dewen Zhong Greg Mattson** Hugo Leung Jason Dove **Mike Phipps** Nico Santiago Sarvagya Sharma Sheng Yang Shivangi Prasad **Taylor Shimek** Thomas Rao Virgina Bailey Xiaoning Wang

Looking for 3 to 4 students

NPL @ Illinois: detector construction

PHENIX RPC

Many local detector construction projects provide unique opportunity for students: sPHENIX calorimeters, COMPASS drift chambers, ATLAS ZDC

COMPASS drift chamber installation

Participation in Major Experiments

Fundamental Symmetries

- Daya Bay
- nEDM

Quantum Chromodynamics

- sPHENIX (RHIC/BNL)
- SeaQuest (FNAL)
- COMPASS (SPS/CERN)
- ATLAS (LHC/CERN)

Large scale project funded by

Nuclear Theory Faculty

Research Professor (Professor Emeritus)

Prof. Jorge Noronha

Prof. Jaki Noronha-Hostler

Prof. Gordon Baym

QCD Out of Equilibrium

Neutron Star Mergers

String theory and the Quark-Gluon Plasma

Quark-Gluon Plasma

QCD Equation of State

Computational Fluid Dynamics **Many-Body Physics**

Neutron Stars

High Energy Nuclear Theory

Current Nuclear Theory Members

Nuclear Theory Group Expanded in Fall 2019

Faculty	Postdocs	Graduate Students	
Jorge Noronha	Matt Sievert	Travis Dore	
Gordon Baym	Mauricio Hippert	Datriak Carzon	
Jaki Noronha-	(Fall 2020)		
Hostler	Enrico Speranza	Looking for 5 to 6	
	(Fall 2020)	students	
THE STATES OF AMAR	Chris Plumberg (Fall 2020)	JOIN US	

Current Research Highlights

Synergy: Precision

Precision Tests of Fundamental Symmetries

Charge, Parity, Time (CPT) invariance

Observation of Neutron Electric Dipole Moment (EDM) implies time-reversal violation

How Small is Small?

- Current limit on neutron EDM is ~ 10^{-26} e·cm
- Equivalent of 10⁻¹³ electron charge at neutron N and S poles

How Does One Trap Neutrons?

- Slow them down! "Ultracold Neutrons" (UCN)
- With kinetic energy of 100 neV (T ~ 1 mK), UCN behave like waves trapped by total internal reflection

Neutron Electric Dipole Moment

Search for physics beyond the Standard Model

- If EDM is non-zero, must be new physics
- Strong constraints on SUSY especially <u>with</u> LHC data
- Improvement of nEDM would push limits off graph

New Measurement: First Phase

- Institut Laue-Langevin, Grenoble (France)
- Currently world's most intense source of ultracold neutrons

Looking for a graduate student

 Nuclear physics (ultracold neutrons) Atomic physics (magnetometers)

\rightarrow Particle/Astrophysics

- Physics beyond the standard model
- Matter-antimatter asymmetry

Understanding the Nature of Neutrinos

Weak interactions

Neutrino mass hierarchy

Pontecorvo–Maki–Nakagawa–Sakata (PMNS) Matrix

$$\begin{pmatrix} \nu_e \\ \nu_\mu \\ \nu_\tau \end{pmatrix} = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{pmatrix} \cdot \begin{pmatrix} \nu_1 \\ \nu_2 \\ \nu_3 \end{pmatrix}$$

 $\theta_{13}???$

Daya Bay Neutrino Experiment (search for the θ_{13} mixing angle)

Nucleon Structure

Why is it interesting?

- 99.97% of the visible mass of the Universe is composed of protons and neutrons.
- Quantum Chromodynamics at the confinement scale remains to be understood.
- How does the proton get its spin?

Flavor structure of the parton distributions in the proton *Questions*

• Is $\overline{s}(x) = s(x)$?

• Is
$$\overline{u}_p(x) = \overline{d}_n(x)$$
?

• Is $u_V(x) = 2d_V(x)$?

1.0 **From Frank** Close's textbook 0.8 (1979)0.6 xu(x)0.4 xd(x)0.2 $x\overline{u}(x)$ $x\overline{d}(x)$ xs(x) 0 0.2 0.4 0.6 0.8 1.0 x

x is the fraction of the proton momentum carried by the quarks/antiquarks (0 < x < 1)

COMPASS @ CERN: Proton Quark Structure

Matthias Perdekamp

- Fixed Target experiment @CERN SPC (France)
- Uses secondary and tertiary beams at M2 beam-line @CERN SPS

- Exploring the 3D structure of proton and neutrons
- Momentum space
 - Drell-Yan process and Semi Inclusive Deep Inelastic Scattering
- Impact parameter space GPDs
 - Deeply Virtual Compton Scattering

COMPASS Data Analysis on FRONTERA Supercomputer

Caroline Riedl

- Petscale new NSF supercomputer: FRONTERA (world's #5 in July 2019)
- 3-23: UIUC COMPASS group received 1.5 Million node hours = 84 Millions core hours
 - PetaByte Data Transfer
 CERN → Texas
 - Raw data processing
 - Monte Carlo simulation
 - Data analysis

COMPASS 2015 data - DGLAP --- TMD-1 0.1 ----- TMD-2 $A_T^{^{sin\phi_s}}$ K FRONTERA TACC | -0.1-0.50.5 0 X_F COMPAS Looking for a graduate student (data analysis)

ATLAS: Search for Gluon Saturation + Radiation Hard Zero Degree Calorimeter

Forward Di-Jets in p-Pb: Testing QCD at Extreme Gluon Densities

Search for saturation effects in the gluon field in the proton
→ Study QCD at the highest gluon field strengths in p-Pb at LHC !

Matthias Perdekamp

Riccardo Longo

Upgrade of the ATLAS ZDC

- Improve radiation hardness of ZDC for high-Luminosity LHC by factor 10
 - ZDCs are located at the highest radiation spot of the LHC!

ZDC: Impact Parameter in Pb-Pb collisions at LHC

Material research: Radiation effects in ultra pure silica

General defects Oxygen rich materia NBOH - center Oxygen deficient material 265 nm Oxygen deficiency 243 nm Twofold H₂ - molecule coordinated silicon 247 nm E '- center 215 nm eroxy linkage 330 nm Cl₂ - molecule 320 nm OH - group roxy radica 2.73 µm 1.39

Collaboration with CMS, LHC accelerator division and Argonne National Lab

Test Beam at CERN and FNAL

Looking for 1 grad student (p-P data analysis + ZDC R&D)

How does one melt the QCD vacuum?

"In order to study the question of the QCD vacuum, we must turn to a different direction, we should investigate some bulk phenomena by distributing large energy over a large volume."

T. D. Lee, Rev. Mod. Phys. 47 (1975)

Heavy-Ion Collisions in a Nutshell – The Little Bang

Study deconfinement of quarks and gluons in the lab

Quark-Gluon Plasma (QGP) Nature's Most Extreme Liquid

Smallest fluid ever produced

Most vortical liquid- spins 10 billion trillion times faster than the most powerful tornado

Most perfect fluid-10 times less viscosity than water

Hottest liquid-T~10¹² Kelvin. LHC won a Guinness World Record.

Quark-Gluon Plasma - Nature's Primordial Liquid existed 10⁻⁶ sec after Big Bang !!

Large Hadron Collider @ CERN

collide pairs of lead nuclei at 5 TeV / nucleon pair center of mass collision energy

different data than the high energy LHC program but the same experiments are used

~1 month / year of data

~100 of the 3000 ATLAS authors work directly on this physics

the resulting QGP: collision energy sets maximum temperature colliding nuclei set maximum size

~10⁴ particles created in the most head on collisions equivalent of ~10³ pp collisions at once

jet quenching in action

cartoon

PRL 105 252303

where next?

- jets are quenched and their structure is modified by the QGP
 - they are then a probe sensitive to the properties of the QGP
 - other discriminating structure measurements
 - finding the energy lost by the jet
 - changing the QGP the jets go through
 - colliding smaller nuclei
 - lower temperature QGP

Looking for 1 (or perhaps 2) students

Modelling Jets Plowing Through the Quark-Gluon Plasma

v-USPhydro+BBMG predictions confirmed at LHC run 2

High Performance Computing

Computation Relativistic Fluid Dynamics

Mapping out the QCD phase diagram

- Lattice QCD/Equation of State
- Relativistic viscous fluid dynamics
- Probing the Quark Gluon Plasma with jets
- Nuclear Structure

Looking for 1-2 students. Interest in computational physics a must!

Out-of-Equilibrium Phenomena in Quantum Chromodynamics

Relativistic kinetic theory

QGP at very high temperatures

Holographic duality/String Theory

model for strongly coupled QGP

Training String Theory Black holes to Study QCD

Shrinking the Quark-Gluon Plasma

Pb+Pb

proton+proton

How does fluid dynamics emerge from

Viscous effects in Neutron Star Mergers

Looking for 1 to 4 students

New research area involving nuclear physics, general relativity, astrophysics, and mathematics

Bi-Weekly Nuclear Physics Journal Club

- Students lead the meetings
- Cover hot topics in the field
- In-depth physics discussions between students, postdocs and faculty
- Ideal place for practicing talks

Frontiers of QCD through the next decade

$2018+ \rightarrow$ Jetting through the QGP (LHC, sPHENIX) Jets in nucleus-nucleus, proton-nucleus RHIC

2030's: Electron Ion Collider (EIC)

Big Questions in Nuclear Physics

- How did visible matter come into being and how does it evolve?
- How does subatomic matter organize itself
 and what phenomena emerge?
 - Are the fundamental interactions that are basic to the structure of matter fully understood?
 - How can the knowledge and technical
 progress provided by nuclear physics best be
 used to benefit society?

The 2015 LONG RANGE PLAN for NUCLEAR SCIENCE

The UIUC Nuclear Physics Group has had significant impact in the field and is poised to continue its leadership in the future