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According to NOAA, 
flooding events cost on 
average $4.3 billion per 
event

Critical Infrastructure Systems are Vulnerable 
to Natural Disasters
Flooding submerges roads and accelerates 
degradation

Impacts:
Mobility
• Longer emergency response time 
• Increased evacuation time
• Reduced transportation of goods, raw 

materials

Impacts:
Economic
• Cost of repairs
• Loss in productivity

floods are responsible 
worldwide in 2017 for 
52% of deaths and 
44% of economic 
damages
from natural disasters (CRED)



Critical Infrastructure Systems are Vulnerable 
to Natural Disasters

Earthquakes damage underground water pipe networks

Impacts:
Service Disruption
• Reduced effectiveness of disaster response (fire department, 

hospitals, disaster recovery centers)
• Loss of public access to water
Economic
• Cost of repairs
• Loss in productivity

M 7.8 earthquake 
on San Andreas Fault, CA could cause 

$24 billion in business interruption losses
due to water supply interruption alone

(>13% of the total estimated costs)



Mitigation planning: targeted infrastructure network 
fortification to maximize resilience

Challenges: limited budget, many subnetworks 
possible, several metrics, predict mobility 
needs

Given a road network and flood risks,
how to upgrade roads to maximize resilience to 
floods or other disasters?

Given water pipe network and earthquake risks, 
select parts of the network to replace with 
seismic resilient pipes

Critical customers (hospitals, 
fire/police stations, emergency 
evacuation centers, power, 
sanitation, etc) must be directly 
connected to the resilient 
network.

All households must be within 
1mi of the resilient network 
(reachable by fire hose).

Challenges: limited budget, many sub-
networks possible, complex constraints 

Flooded road 
segments

Road network flood scenario

Washington, DC



Data-driven framework for flood resilience 
road mitigation planning
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141,244 m of roads 
flooded
(7.2%) out of 
1,947,597 m total

187,388 trips
are infeasible
(32%) out of 
582,671 

Mobility Data3

Washington, DC - city



No fortification: 
187388 infeasible trips

Budget of 500 meters: 
Recovered 82.9% of infeasible trips

Budget of 10,000 meters: 
Recovered 99.6% of infeasible trips

Number of Infeasible Outgoing Trips per Zone Under Varying Budgets

Small targeted investments can have huge impacts

Washington, DC - city



Graph (road network contraction):
● Vertex: connected unflooded component
● Edge: flooded road segment

Edge cost: cost of upgrading road segment
Budget: total cost of upgrades allowed
Profit function: aggregated travel demand 
between unflooded components

● Given: graph G=(V, E), edge costs ce≥0, budget B, and profit function pv1, v2≥0
● Find: a set of edges forming a forest F (no cycles) such that the cost of edges in F is 

less than B, and the profit of pairs of vertices connected in F is maximized
Johnson, David S., Maria Minkoff, and Steven Phillips. "The prize collecting steiner tree problem: theory and practice." SODA. Vol. 1. No. 0.6. 2000. 7

Budget-Prize Collecting Steiner Forest

Road Flood Mitigation Planning for Mobility
• Given: a road network annotated with flood exposure and mitigation costs, 

as well as pairwise mobility needs
• Find: which flooded roads should we upgrade to maximize how many trips can still be 

completed on the road network given the remaining flood exposure?



Budget-Prize Collecting Steiner Forest (Budget-PCSF)

● NP-Hard
○ PCSF: APX-Hard (3-approx)
○ Quota-PCSF:  O(2 |V|2/3 log|V|)-approximation

● Past Budget-PCSF Solution Methods
○ MILP models: poor computational scalability
○ Greedy heuristic: arbitrarily bad solutions and slow

● Our approach: prove optimization problem is restricted supermodular, 
and develop novel scalable algorithms



Theorem: Budget-PCSF exhibits Restricted Supermodularity
● the marginal benefit of adding an element (edge) to a superset T is larger 

than that of adding the element to a subset S (compounding effects), 
● when considering restricted subsets satisfying specific constraints (budget 

constraint and no-cycles/graph-matroid constraint)

Novel function characterization: previous work focused on restricted 
submodularity (diminishing returns) and only a single type of constraint



Step 1: Use current solution S to compute coefficients
for modular function that is a lower bound for the 
original objective function value

Step 2: Find a new solution S’ that maximizes this 
modular lower bound (MLB), satisfying both 
budget and graph matroid constraint

Step 0: Choose initial solution S

set
S = S’
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we propose 2 algorithms for 
maximizing our bounds subject to 

both these constraints

Solution Approach: Semigradient Ascent (Iyer et al. [2013], Bai et al. [2018])

we show how to compute 
modular lower bounds for the 

restricted supermodular
Budget-PCSF objective



1. Greedy [COMPASS 2018]: add one edge at a 
time resulting in best mobility gain

2. Maximizing restricted supermodular
function s.t. budget + matroid constraints

○ Semigrad-GreedyMLB: Iterate to 
convergence using greedyMLB (adding 
edge with best MLB to cost ratio)

○ Semigrad-KR: Iterate to convergence using 
a Knapsack-Repair to maximize modular 
lower bounds

○ KR: One iteration of Semigrad-KR

Solving Budget-constrained Prize-Collecting Steiner Forest

better 
solutions

slower 
runtimes

Semigrad algorithms 
give better solutions 
(upto 1000%) and are 
moderately faster

KR gives same 
quality of solutions 
as Greedy with 
1000x speedup

“Budget-Constrained Demand-Weighted Network Design for Resilient Infrastructure”. Gupta, A. 
and Dilkina, B. IEEE International Conference on Tools with Artificial Intelligence (ICTAI), 2019.



Common real-world workflow: Predict then Optimize
1) Predict daily travel flows between pairs of census tracts in urban areas 
based on geographical, census and job data.

Can we build mobility models that generalize to new cities?

2) Optimize road flood mitigation planning using predicted travel flows / 
mobility needs

How do the errors in mobility flow prediction impact downstream 
optimization for road flood mitigation planning?

12

What if we don’t have  mobility data?



Mobility Flow Data for three metro areas 

3-fold cross-validation across Washington DC, Seattle and Chicago

Outgoing trips 
from a census 
tract
(in yellow)

Washington D.C. Seattle Chicago
# Census Tracts 1,547 772 2,432
# Inter-Tract Pairs 2,391,662 595,212 5,912,192
Total Daily Trips 13,251,320 7,438,891 17,217,448
Population 7,152,353 3,994,119 10,500,691
Area (sq mi) 7,096 6,599 11,039



Can we predict CensusTract-to-CensusTract travel flows?
Gravity Model Intervening Opportunities Model

High travel demand between 
densely populated, nearby areas

High travel demand if there are 
few nearby alternatives

ML: Extended Gravity Model, Random Forest Model

Travel demand is a complex function of 
origin and destination zone attributes

High population 
density,

mixed land use,
low number of jobs

Low population 
density,
developed/urban land,
high number of jobs
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Features

Feature category Origin/destination feature

Population ● Population
● Population density

Geographical ● Area
● Low-, medium-, and high-intensity 

development areas
● Forest area

Work ● Employed population
● Unemployed population
● Average commute time
● Number of jobs
● Per capita income

Population

High-
Intensity 

Developed 
Area

Num. Jobs



Features
Intervening Features

Feature 
category

Origin-destination pair 
feature

Geographical ● Distance (Euclidean or 
road distance)

Population ● Intervening population

Work ● Intervening jobs
● Intervening income
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Washington DC Metro: Frederick County, MD

Ground Truth 
Outbound Flows

Gravity Exponential
Errors in Predicted Outbound Flow

Random Forest
Errors in Predicted Outbound Flow 

How do prediction errors affect downstream optimization?

Underestimate --- overestimate Underestimate --- overestimate



Frederick County, MD

FEMA flood scenarios
109 km flooded roads
compressed graph: |V|=312, |E|=461

ML mobility almost as effective as true data for planning

“Learning-Based Travel Prediction in Urban Road Network Resilience Optimization”. Qiu, G., 
Gupta, A., Robinson, C., Feng, S. and Dilkina, B. AAAI Workshop on Urban Computing, 2021.

How do prediction errors affect downstream optimization?



2017 UN Challenge on Data for Climate Action:
infrastructure planning for mobility during floods

UN Challenge 
Thematic Winner 

for Climate Adaptation

Road network
Open Street Maps

Estimated flood 
maps 
Fathom.Global

Mobility Needs 
(from CRD)
Orange S.A.

Senegal



Mitigation planning: targeted infrastructure network 
fortification to maximize resilience

Challenges: limited budget, many 
subnetworks possible, several resilience 
metrics, predict mobility needs

Given a road network and flood risks,
how to upgrade roads to maximize resilience to 
floods or other disasters?

Given water pipe network and earthquake risks, 
select parts of the network to replace with 
seismic resilient pipes

Critical customers (hospitals, 
fire/police stations, emergency 
evacuation centers, power, 
sanitation, etc) must be directly 
connected to the resilient 
network.

All households must be within 
1mi of the resilient network 
(reachable by fire hose).

Challenges: limited budget, many sub-
networks possible, complex constraints 

Flooded road 
segments

Road network flood scenario

Washington, DC



Action 61: Advance seismic safety, prioritizing 
the most vulnerable buildings, infrastructure, 
and systems

“Expand Seismic Resilient Pipe Network
The City will expand development of the seismic resilient 
pipe network. … Resilient pipeline planning, design, and 
construction requires the development of new 
informational tools and mapping of geohazards ….”

[Craig Davis, 2017] “The proper layout of seismically 
robust pipe will allow the network to cost-effectively 
suffer damage while meeting performance criteria 
supporting community resilience goals.”https://www.lamayor.org/sites/g/files/w

ph446/f/page/file/Resilient%20Los%20A
ngeles.pdf

A water main break following a 6.0 
earthquake in Napa, California.
https://www.cbsnews.com/pictures/strong-earthquake-knocks-
napa-valley/17/

City of Los Angeles Resilience Goals

https://www.lamayor.org/sites/g/files/wph446/f/page/file/Resilient%20Los%20Angeles.pdf
https://www.cbsnews.com/pictures/strong-earthquake-knocks-napa-valley/17/


Challenge: Master Plan for Water Pipe Network Upgrades

Given a water network and seismic risk 
maps, we know which pipes are likely to 
break.

Critical customers must be directly
connected to the resilient network 
(hospitals, fire/police stations, emergency 
evacuation centers, power, sanitation, 
etc).

All households must be ‘’covered’’, e.g.
within 1mi of the resilient network 
(reachable by fire hose).
Challenges: many sub-networks possible, 
complex constraints

water pipes

health facilities

other critical 
customers
fault lines

liquefaction 
zones
landslide 
zones

2 mi

2 mi

Select parts of the network to replace with 
seismic resilient pipes



Data

• Infrastructure data: Pipe network (pipes and joints) and water 
sources (trunk lines, pumps, etc.) of service zones 
• Locations of critical customers (hospitals, evac. centers, police & fire 

stations, etc.)
•Hazard data: Fault zones and liquefaction

areas to determine pipes and customers 
threatened by earthquakes

#Edges #Nodes

2mi x 2mi 853.9 563.3

4mi x 4mi 3,264.8 2,132.6



• 𝐸: The set of pipes
• 𝑉: Intersections of pipes including pump stations, valves and hydrants etc.
• 𝐺 = (𝑉, 𝐸) : An undirected graph representation of the water network
• 𝑐(𝑒): The cost of replacing pipe 𝑒 with seismic-resilient pipes
• 𝑇 ⊆ 𝑉: The set of water sources
• 𝐶 ⊆ 𝑉: The set of critical customers
• 𝑅: The set of residential areas
and 𝑆 𝑟 ⊆ 𝐸, 𝑟 ∈ 𝑅: The set of pipes that are close enough to serve 𝑟
Find:
• A set of edges 𝐸! ⊆ 𝐸 with minimum sum of costs, such that
• each customer is connected to a source node
• at least one edge from each 𝑆 𝑟 is connected to a source node

Model

𝑟! 𝑟" 𝑆(𝑟")

𝑆(𝑟!)

Steiner Network Problem with Coverage Constraints (SNP-CC)
NP-hard and cannot be approximated to a factor of o ln |𝑅| in poly time.

Node constraints

Coverage constraints



A Flow-Based MILP formulation

• 𝑂( 𝑉 + |𝐸|) variables with𝑂 𝑉 + 𝐸 + |𝑅| constraints

Flow conservation; Each critical
customer absorbs 1 unit of flow

Imposing coverage constraints

Edge 𝑒 consumes 1 unit of flow if chosen

Inject flow to the sources

Flow conservation at sources and sinks;
ensure all critical customers are connected

𝑥#: whether edge 𝑒 is selected (binary)
𝑦#: the number of units of flow on edge 𝑒

𝑟! 𝑟"
y=3y=3

y=2

y=1

y=2

y=1

Inject flow to
the source

y=8

Chosen edges and
customers consume 1
unit of flow (maintain 
connectivity to water 
sources)
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• Developed an optimization algorithm that finds the minimum cost plan for upgrading 
water pipes that satisfy both the critical customer connectivity and fire hose coverage 
constraints

• 3 locations on the map of Los Angeles
• For each location, we use a square of 𝐿×𝐿 miles (𝐿 = 2,4,6,8 miles)
• The baseline solutions from iterative decisions cost
6% to 23%more than our solutions

• Entire Service Zone in LA
• It includes 34,462 pipes and 300 critical customers,
• out of which 8,434 threatened pipes and 93 threatened customers.
• Our approach finds the optimal solution

with cost 23.47 miles in 18 minutes

• Currently applying across Los Angeles wit LA DWP

Optimized Mitigation Planning
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Scalable runtime of
our approach

“Enhancing Seismic Resilience of Water Pipe Networks”. Huang, T. and Dilkina, B. 
ACM SIGCAS Conference on Computing and Sustainable Societies (COMPASS), 2020.



Data + AI Algorithms helps answer questions like:

•Which are the components of the infrastructure system that are most 
at risk?
•Who is affected and how much -- how are the consequences of 

infrastructure disruptions distributed, who and where are the most 
vulnerable and at-risk populations?
•Where can we plan (near) optimally infrastructure upgrades to 

maximize resilience, given limited resources?
•What are the trade offs between optimizing for different metrics 

(cost-benefit analysis)?

•Funded by:
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