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Abstract—With an increased emphasis on the cyber-physical
security of safety-critical industrial control systems, pro-
grammable logic controllers have been targeted by both secu-
rity researchers and attackers as critical assets. Security and
verification solutions have been proposed and/or implemented
either externally or with limited computational power. Online
verification or intrusion detection solutions are typically difficult
to implement within the control logic of the programmable logic
controller due to the strict timing requirements and limited
resources. Recently, there has been an increased advancement in
open controller systems where programmable logic controllers
are coupled with embedded hypervisors running operating sys-
tems with much more computational power. Development envi-
ronments are provided that allow developers to directly integrate
library function calls from the embedded hypervisor into the
program scan cycle of the programmable logic controller. In this
paper, we leverage these coupled environments to implement
online cyber-physical verification solutions directly integrated
into the program scan cycle as well as online intrusion detection
systems within the embedded hypervisor. This novel approach
allows advanced security and verification solutions to be directly
enforced from within the programmable logic controller program
scan cycle. We evaluate the proposed solutions on a commercial-
off-the-shelf Siemens product.

I. INTRODUCTION

The security of Programmable Logic Controllers (PLCs) is
increasingly becoming a vital issue in securing industrial con-
trol systems (ICS). There is an inherent difficulty integrating
security into these PLCs as they are intended to be simple
computing machines whose programs can be easily verified
with the underlying physical systems they are controlling.
Adding advanced security tools can compromise the time-
sensitive operations as well as any general temporal attributes
of the cyber-physical system.

The security of PLCs continues to receive an increased
amount of attention in the wake of ICS-targeted malware.
ICS-CERT reports that in FY 2015 [1], they responded to
295 reported incidents involving critical infrastructure in the
United States. Most programming and operator commands are
sent using insecure proprietary network protocols. Not only

have proprietary protocols been reverse engineered, but open-
source API’s [2] have been released that allow programmers
to develop invasive tools that can be used with malicious
intent, such as PLCInject [3]. Additionally, open source packet
dissectors have been developed for network protocol analyzers.

The reverse engineering of certain proprietary protocols has
resulted in new protocols being developed with encrypted
communication. Although these protocols can provide secure
communication for the latest products, they are typically only
supported by later devices while the legacy devices remain
vulnerable to packet injection attacks.

Offline security solutions such as TSV [4] and [5] have
been proposed as bump-in-the-wire verification mechanisms
sitting between the operator/programmer interface and the
PLC. These solutions have provided the ability to verify the
programs downloaded to the PLC against temporal safety
properties. Furthermore, models have been proposed for offline
analysis of periodic traffic to and from a PLC [6]. These
solutions were typically provided as external solutions, where
more advanced processing systems are coupled with the PLC
system to verify the programming inputs of the PLC. This
allows for the advanced operations that require an abundance
of memory such as the calculation of advanced physical
properties of a system or processing the network traffic.

Modular embedded controllers introduced the concept of
coupling a PLC with an embedded hypervisor. The hypervi-
sors are typically much more advanced embedded operating
systems than the actual PLC. APIs are provided for developing
programs that can be directly integrated into the programming
blocks of the PLC either synchronously or asynchronously
through shared memory between the PLC and the hypervisor.
Development environments are provided to generate program-
ming blocks that can call an associated library function on the
hypervisor, e.g., a DLL file on a Windows hypervisor, allowing
the PLC to pass inputs and take in outputs from the library
function within the main PLC scan cycle [7].

In this paper, we leverage these coupled environments to
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implement online security solutions directly integrated into
the PLC. We first provide a novel approach to implementing
a cyber-physical verification solution directly integrated into
the scan-cycle of the PLC using the embedded hypervisor
to perform advanced calculations of the underlying physical
system. We then present an online monitoring solution that
provides an IDS based on aforementioned security models of
periodic PLC traffic.

Before providing further details of our solutions, it is im-
portant to note that Industrial Control Systems should always
be secured using a holistic approach as outlined in security
standards such as IEC 62443. The layered security architecture
derived from IEC 62443 can be summarized by considering
Plant Security, Network Security, and System Integrity as
shown in Figure 1.

Fig. 1. The Concept of Defense-in-Depth

Security solutions as applied in an industrial context must
take into account these layers of protection. For example,
the solutions described in this paper are part of the “System
Integrity” layer which supports “Detection of attacks”.

This paper is organized as follows. First, we provide a
high-level overview of how our security solutions will be
integrated into PLCs as well as our threat model in SectionII.
Then we present a model for a cyber-physical verification
solution that leverages the shared memory between the PLC
and the embedded hypervisor in Section III. Next, we present
a model for a passive intrusion detection solution within the
embedded hypervisor that provides online modeling of the
network traffic within the PLC in Section IV. We then show
how we implemented and evaluated our security solutions in
Section V. Finally, we present related work in Section VI and
conclude in Section VII.

II. OVERVIEW

The two security solutions presented in this paper leverage
the coupling of embedded hypervisors and PLCs. Figure 2
shows an overview of how both models would be integrated
into the PLC. For our cyber-physical verification solution,
programming blocks are generated and directly integrated
synchronously or asynchronously into the main scan cycle of

Physical System 

PLC Sh
are

d
 M

e
m

 

Control System Network 

• Protocol Analysis 
• Safety Verification 

Embedded Hypervisor 

Control Logic 

Fig. 2. System Overview. The coupled system communicates with the control
system network. The PLC runs the control logic program that interfaces with
the underlying physical system. The embedded hypervisor shares memory
with the PLC and can run models with advanced calculations for protocol
analysis and safety verification.

the PLC that share memory with a library on the embedded
hypervisor. The threat model for this solution assumes that
memory protection mechanisms are in place that can limit
PLC clients to write to designated areas of memory. As we
will detail in section III, these designated areas are treated as
temporary buffers before the data along with the system state
is verified within the embedded hypervisor and then forwarded
to a destination buffer. Therefore, this model assumes that
an attacker cannot circumvent this mechanism by directly
writing to the destination buffer. If the proprietary protocol in
question has been reverse-engineered, then the attacker might
have the ability to remotely program the PLC and dictate
the control flow of the program. The second IDS solution
allows online intrusion detection from within the PLC. The
threat model assumes that hypervisor is inaccessible, i.e.,
cannot be tampered with, and that the hypervisor shares the
same Ethernet channel as the PLC. This allows the embedded
hypervisor to directly monitor all traffic coming into the
PLC Ethernet port and to model the PLC from within the
embedded hypervisor. Additionally, in both cases, the threat
model assumes that a secure reporting mechanism is in place.
Although the solutions provide detection mechanisms and
active verification solutions, they do not emphasize secure
reporting mechanisms to the operators and/or programmers.
Actionable items upon intrusion are outside of the scope of
this paper.

III. CYBER-PHYSICAL VERIFICATION WITHIN A PLC
SCAN CYCLE

Previous bump-in-the-wire verification solutions have been
implemented in order to symbolically verify the logical pro-
grams download to a PLC against temporal safety properties.
However, these solutions rely heavily on the soundness and
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Fig. 3. CPS Verification: (1) PG/Client/HMI writes to temporary buffer; (2)
A function in the verification library is called to verify this value; (3) If
value doesn’t violate safety constraints, the value in the temporary buffer is
transferred to the destination buffer

completeness of their external, offline verification solutions.
There is an inherent difficulty in defining and verifying cyber-
physical safety properties given the variety of inputs in a typ-
ical PLC program and the complexity of the underlying phys-
ical invariant properties. Similarly, IDS models are passive
external security solutions. Previously proposed models seem
to have only been implemented for offline traffic analysis. In
both cases, there is no active verification of values written to
memory in the PLC. PLCs support memory protection and
access control, but several programs still provide PLC clients
with the capability of modifying the variables that represent
discrete attributes of the cyber-physical solution.

Using PLCs coupled with embedded hypervisors, active
cyber-physical verification solutions of values written to mem-
ory can be implemented and directly integrated into the scan
cycle of a PLC. Our solution leverages this coupling to verify
values written to areas of memory in the PLC. A high-level
overview and control flow of a sample solution is presented
in Figure 3.

The solution works by restricting writes to the memory in
the PLC to designated temporary buffers in memory. When
a write to the temporary buffer is detected, the functional
programming block associated with the embedded hypervisor
library function is invoked and passes the system state to the
embedded hypervisor. The written value is verified against
previously defined temporal safety properties based on the
underlying physical model and the current system state. If the
value written to the temporary buffer doesn’t violate any safety
or security constraints, the embedded hypervisor will return a
signal to the PLC that allows this value to be forwarded to
the destination memory buffer. Otherwise, the transfer will be
blocked and a notification can be raised to the operator that
an unsafe command has been issued.
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Fig. 4. Passive IDS implementation within the embedded hypervisor. The
PLC and the hypervisor listen on the same port. The hypervisor maintains a
model of the traffic for anomaly detection, such as the expected queries (Q)
and responses (R) in an ethernet protocol, in parallel to the PLC running the
control logic program.

The purpose of interacting with the embedded hypervisor
is to provide the ability of advanced calculations of the
underlying physical system model. For example, if a PLC is
controlling significant components of an electric power grid,
e.g., circuit breakers and tap changers of transformers, the
embedded hypervisor can take care of running optimal power
flow equations to determine the impacts of a particular action
in real time, e.g., opening/closing a circuit breaker.

IV. AUTOMATON-BASED CONTROLLER ANOMALY

DETECTION

The embedded hypervisors can also be used to implement
online IDS from within the PLC. IDS solutions have been
proposed for modeling PLC traffic for the purpose of detecting
malicious packets. Our solution is based on the deterministic
finite automaton (DFA) solution presented in [8] and [6].
Figure 4 presents a simple DFA example of Modbus traffic.

In this system, an expected periodic traffic pattern is a
sequence of four packets: a first query (Q1), a response to the
first query (R1), a second query (Q2), and a response to the
second query (R2). If a subsequent packet represents the next
expected state in the pattern, then we have a Normal transition
from one DFA state to the next. If the subsequent packet is the
same as the current packet, then we have a Retransmission and
the DFA remains in the same state. If the subsequent packet
is not the expected packet and is within the subset of {Q1, R1,
Q2, R2}, then we have a Miss and the DFA state transitions to
the state of the subsequent packet. If the subsequent packet is
not the expected packet and is not within this subset, then we
have an Unknown and the DFA transitions to the beginning
of the pattern sequence. An Unknown transition is the worst
type of transition and can generally be expected to be an
intrusion. Further details of the DFA algorithm as well as its
application to specific PLC Ethernet protocols can be found
in the aforementioned papers.
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Fig. 5. CPS Verification Solution. WinAC ODK implementation allows
the main scan cycle programming block, OB1, to invoke the automatically
generated functional programming blocks, FB, associated with the verification
library functions of the DLL located in the embedded hypervisor. The data
block, ”HMI2PLC” DB, can be written to by the legitimate HMI panel of our
cyber-physical system or by a malicious client on the network.

V. EVALUATIONS

In this section, we present our evaluations and implemen-
tations of the two proposed security solutions. Both of our
solutions were implemented using the SIMATIC ET 200SP
Open Controller, CPU 1515 PC. The PLC has a hypervisor
with Windows Embedded 7E 32-Bit. We used SIMATIC
WinAC Open Development Kit (ODK) to implement both
of our solutions. The WinAC ODK provides an API for
Microsoft Visual Studio that allows developers to generate
DLLs with desired library functions to be stored on the
embedded hypervisor, while also generating the associated
programming blocks that are directly downloaded to the PLC
and can interface with the DLL through shared memory.

A. Cyber-physical Verification Solution

The previous simple scenario was directly integrated into
a cyber-physical simulation program. Figure 5 provides an
overview of the cyber-physical system used in our solution.

The associated physical system in this scenario is a laser-
cutting tool that places materials onto a cutting platform and
cuts a particular shape specified by the operator. Typically the
HMI reads from and writes to a specific DB, which we labeled
”HMI2PLC”. We developed an attack scenario in which a
hacker using a Snap7 client to inject malicious packets that
alter this DB.

We integrated the WinAC ODK functions directly into the
main cyclic programming block, OB1. Table I provides the
safety specifications of our sample security solution.

The first safety specification states that the system should
not receive a manual direction signal–moving the cutter up,

down, left, or right–while the system is in ”Auto” mode, mean-
ing that the cutting should be automatic. When OB1 detects a
direction signal, a call to the associated WinAC ODK function
is triggered. The WinAC ODK function will then check the
relevant status bits and, if there is a violation of the safety
specification, it will raise an alarm (e.g., a notification will
be raised on the HMI panel). The second safety specification
states that the laser-cutter’s homing position (i.e., the position
the cutter returns to when it has finished a full cutting-cycle)
cannot change while the system is not in ”Auto” mode and
the system is not in ”Idle” mode, which is just the mode that
indicates the cutter is standing idle. If OB1 detects that either
the X- or Y-coordinate of the homing position setting has
changed, it will invoke the associated WinAC ODK function
in the same manner to verify the change against these safety
rules. If the WinAC ODK function detects a violation, it will
raise a signal that forces the system to finish the current cutting
cycle and stop production until the operator acknowledges the
intrusion. The final specification just states that the cutting
speed of the laser cannot change while in ”Auto” mode and
while the ”Cutting” indicator is true. If OB1 detects a change
in the cutting speed, it will invoke another WinAC ODK
function that issues and Emergency Stop signal if the rule
was violated.

Although these rules could have been easily implemented
using simple ladder logic or STL programming, they serve
as place holders for advanced calculations for physical equa-
tions. Our goal was to demonstrate a highly-coupled PLC
security solution. Furthermore, these solutions can be directly
integrated into the scan cycle timing and allow developers
to account for the security solution in their timing specifi-
cations. The associated programming blocks can be invoked
synchronously or asynchronously depending on the safety/op-
erational requirements of the scan cycle.

This IDS relies on the assumption that the proprietary
protocol is not reverse-engineered. If the PLC’s programming
protocol(s) are reverse engineered, a hacker who is able to
establish a programming connection to the PLC can just
program any blocks to overwrite or skip over the security
implementation.

B. Online Automaton-based Anomaly Detection Solution

Our IDS solution implements an online analysis using T-
Shark [9] to inspect every packet from within the embedded
hypervisor. Using our knowledge of the S7-comm protocol
from David Nardella’s analysis, we built our solution on top
of an already existing S7-comm Wireshark dissector plugin.
We directly integrated the DFA IDS directly into the packet-
dissection so that every packet over S7-comm protocol is
processed through our model.



TABLE I
SAFETY SPECIFICATIONS FOR LASER-CUTTING SYSTEM

Trigger Signal Safety Conditions Violation Response
Manual Direction Click(↑, ↓,←, →) !(Auto) Notification
Home Position Changed !(Auto) && !(Idle) Stop Production
Cutting Speed Changed !(Auto) && !(Cutting) Emergency Stop
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1 Training Phase 

2 Enforcement Phase 

Model Generation 
Q1 R1 Q2 Q2 

Pattern Buffer: 

New Packet: 

Fig. 6. Deep packet inspection from within PLC. The solution first trains
the model by queueing the headers of the first 1500 incoming packets and
generating a DFA based on the training set, usually as a sequence os queries,
Q, and responses, R. This DFA will then be used to enforce intrusion detection
within the hypervisor

Figure 6 shows an overview of our IDS implementation.
T-Shark will listen on port 102, i.e., the shared PLC Ethernet
port, for incoming packets and our plugin will dissect any
packets that utilize the S7-comm protocol. As in [6], we have
a learning stage (where the periodic pattern is learned) and an
enforcement stage (where each packet is checked against the
learned pattern). The symbols of our DFA are solely based
on the headers of the S7-comm PDU. We split any multi-
reads or multi-writes into individiual symbols. For example,
if one packet specifies a write to 18 variables, we will split
that packet into 18 separate symbols with the same prefix.
Initially, we set our max pattern length to be 1500 symbols,
with a validation window size of 6000 (these numbers taken
from the latter paper). Therefore, our plugin will queue
the first 6000 packets (which are assumed to be benign).
Starting at a pattern length of 2 and increasing up to 1500,
we check to see which pattern length best fits the periodic
data. A pattern’s performance is essentially determined by
the number of Normals over the total number of transitions
(Normals+Misses+Retransmissions+Unknowns).

Once we select an appropriate pattern, we can then set
this pattern as our DFA. Each subsequent symbol is checked
against this DFA and any Misses, Retransmissions, or Un-
knowns will be reported accordingly. In our solution, we
had the program write a portion of memory that would
signal an alarm whenever an Unknown symbol was detected.
Furthermore, we had to modify our validation window size
and max pattern length as the simulation program generated
much more symbols than 1500 in one cycle.

We reinforced the IDS solution by ensuring that Retrans-
mission packets were valid. Because the DFA solution discards

the actual data values being written to variables, an attacker
could generate a packet that has the same symbol as a
previous packet and manipulate the data. Because the pattern
is periodic, the attacker can then find a way to inject the packet
so that it lands in the sequence just before or after the same
packet in the pattern. The DFA solution would simply identify
this packet along with the extra acknowledgement packet as
Retransmission symbols (since there will most likely be two
acknowledgement packets in a row). To resolve this issue, we
simply keep a data buffer that holds the data of the previous
packet. If the current packet is identified as a Retransmission,
we just compare the two data buffers and make sure nothing
has been changed. Although this does not mitigate the case for
Misses (as the data would not be expected to be the same),
we can guarantee that valid Retransmissions are benign.

In addition to not being able to validate Miss packets, there
are a couple of limitations with this IDS solution. First, it
relies on the data being highly periodic. For fully automated
systems where there is little to no human interaction, our
IDS solution would have an extremely high intrusion-detection
accuracy. However, most industrial control systems involve
operators who use HMI panels to send commands to the
PLCs. The simulation program was designed to simulate an
operator that starts the cutting process between 1 and 10
seconds every cycle. This operation will generate one symbol,
i.e., the packet the operator sends to start the cutting process.
This symbol will almost always be identified as a Miss since
the operator starts the process at a different point in the
pattern sequence every time. This false positive could most
likely be mitigated by adapting the learning process to the
application-specific pattern. There are many ways to modify
the algorithm by incorporating supervised learning. As a stand-
alone, unsupervised process, though, our algorithm can only
guarantee that Normal, Retransmission, and Unknown packets
will be properly identified and handled accordingly. However,
the goal of this solution was to present a sample IDS solution
that can be embedded within the PLC. Having an advanced
embedded hypervisor coupled with the PLC allows the system
to provide online deep-packet inspection.

VI. RELATED WORK

In this section, we will present several related verification
and security solutions for PLCs. It is worth noting that our



solutions emphasize the ability to verify and secure the PLC
from within the device, not the security models themselves.

We first review works related to the guidelines associated
with securing control systems. In [10], NIST guideline security
architectures are presented for ICS with respect to supervisory
control and data acquisition systems, distributed control sys-
tems, and PLCs. Similar guidelines for the energy industry are
presented in [11] and [12]. [13] and [14] argue that compliance
with these standards provide a false sense of security.

We now discuss previous security and verification solutions
presented for control systems. TSV [4] presented an external
bump-in-the-wire verifier for process controller code down-
loaded to the PLC. Mohan et al. [15] introduced a monitor
that dynamically checks the safety of plant behavior. Offline
intrusion detection solutions have been proposed to model
PLC traffic as a deterministic finite automaton in [8] and
[6]. Another model based intrusion detection was proposed
in [16]. In all cases, the security solutions were implemented
as external solutions as opposed to within the PLC. Avatar [17]
provides a framework to support dynamic security analysis of
embedded systems firmware. However, the firmware resides
below the control logic level and security/verification solutions
cannot be easily integrated into the scan-cycle of the PLC.
In general, our solution focuses more on application-level
security solutions. [18] uses mathematical analysis techniques
to evaluate various aspects, such as safety and reliability, of
a given control system, but focuses on accidental failures and
not malicious actions. PLC vendors themselves typically use
basic security mechanisms with a single privilege level [4].

VII. CONCLUSIONS

In this paper we presented two security models for PLCs
that leverage the advanced computational power of embedded
hypervisors that are coupled with PLCs. We evaluated im-
plementations of both models on a real PLC on a simulated
cyber-physical system with unpredictable operation.
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