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Abstract—Phasor Measurement Units (PMUs), also known as
synchrophasors, are used to measure the states of the power
grid. Their GPS time synchronized readings provide assistance
with real-time operations and off-line analysis to improve the
reliability and efficiency of the grid. Unfortunately, the GPS
signal is weak and vulnerable to jamming, meaconing and
spoofing. As such, there is a concern that the GPS-based time
synchronization of PMUs may be a potential point of entry for
attacks on the power system, resulting in power disturbances
and/or outages. To address this concern, we present Direct Timing
Estimation (DTE) for the reliable, robust and secure GNSS-based
time transfer to PMUs.

As a direct method, Direct Timing Estimation (DTE) does not
rely on intermediate measurements such as code discriminations
and pseudoranges. Instead, it generates timing solutions by
operating directly on the raw signal. In this manner, the entire
received signal information is utilized, leading to increased
robustness in tracking. We developed and implemented DTE
on our research platform - PyGNSS. We then conduct realistic
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simulations, such as jamming and meaconing, based on data
collected from field experiments to evaluate the performance of
DTE. Through the experiments, we demonstrate the enhanced
performance of DTE with respect to conventional algorithms,
such as scalar tracking and vector tracking, in hostile situations.

I. INTRODUCTION

Direct Timing Estimation (DTE) works by Maximum Likeli-
hood Estimation (MLE) of timing, similar to MLE of position
in Direct Positioning (DP) or Direct Position Estimation
(DPE). MLE operates by searching for the optimal parameter
value that maximizes the likelihood of the observation. Ap-
plying MLE to DPE, the observation is the entire received
signal and the set of parameters to be optimized are the
receiver position, clock bias, velocity and clock drift. Each
parameter set is used to generate a corresponding signal replica
and the correlation amplitude between the signal replica and
the received signal gives an indication of the joint likelihood
between the underlying parameters and the observation. This
process utilizes information from the entire received signal and
operates without the use of intermediate measurements, such
as pseudorange and carrier phase.

In the case of PMU applications where the known, true
position of the static GPS receiver can be accurately and
precisely surveyed ahead of time, only the search in the timing
domain is required. Thus, the set of parameters to be searched
for can be reduced from the receiver position, clock bias,
velocity and clock drift to just clock bias and clock drift.
This reduces the dimensionality of the problem from eight to
two, reducing computational complexity while providing an
additional layer of security and robustness.

The rest of the paper is organizes as follows. Section II of
the paper describes the DTE receiver architecture. The signal
replica is generated from a known receiver position, velocity
and the parameter set containing only the clock bias and clock
drift. The objective is to search for the timing solution that
would maximize the correlation between the signal replica and
the received signal. Section III-A of the paper discusses the
experiments based on field data. The data was collected using
a Universal Software Radio Peripheral (USRP) connected to
a Chip-Scale Atomic Clock (CSAC). The experiments, where
the receiver was subjected to simulated jamming and mea-
coning, was conducted in post-processing using our research
platform - PyGNSS. Section III-B provides an analysis of
the experimental results, demonstrating the viability of DTE
and its robustness to hostile situations. Finally, Section IV
summarizes the paper.



II. DIRECT TIMING ESTIMATION

We propose Direct Timing Estimation (DTE) for the secure
and robust GPS-based time transfer to PMUs. DTE is based
on the concept of a vector correlator, where a signal replica,
comprising of all channels in-view, is generated and correlated
against the received signal. In section II-A, we begin by
describing one of our novel, effective and computationally
efficient implementation of the vector correlator. We then
discuss our implementation of a joint navigation and track-
ing Extended Kalman Filter (EKF) that goes well with that
implementation of the vector correlator. In section II-B, we
further specialize and simplify our implementation of DTE.

A. DTE with Vector Correlator and Extended Kalman Filter

In DTE, we are searching for the clock bias Xs; and clock
drift X _; parameters that leads to the signal replica having the
highest correlation against the received signal. In other words,
given the known receiver position X, , . and velocity X ; :,
we are trying to estimate the timing states of the Receiver:

X : state vector of Receiver (D

[c5t705t]T

cot : clock bias (m)

ot clock drift (ms™1)

¢ : speed of light, 299792458 (ms™!)

To estimate the unknown timing states of the Receiver, we
have to first look at the relationship between the Receiver
states and the received signal. We begin by modelling the
received GPS signal as follows:

Y : model of received GPS signal 2)
3 DG Tl + S )
Di(t) : databit sequence of the i*" satellite
Gi(t) : LI C/A code sequence of the i'" satellite
ZOde’k : code frequency of the 7' satellite 3)
= fC/A + fcaid X féca’r‘r,k
fmde’k : code phase of the i'" satellite 4
—fcya i
= ¢ (HXw,yyzyECI - X:v,y,z,ECIH
+(Xese — Xis))
carri - carrier frequency of the it" satellite (5)
= fIF + fécm’r,k
frr : intermediate frequency (IF), (Hz)
fécam . : carrier doppler frequency of the i satellite (6)
= _J;Ll (—losiyy,z (Xig.2,BCI
—Xigzpen) T (X — Xig))
Zos"z’yyz : line of sight vector in ECI coordinates @)
= X;,y7z - X%ZI»Z
fcya ¢ frequency of C/A code, 1.023 (M Hz)
fr1  : frequency of L1 carrier, 1575.42 (M Hz)

As shown above, the received GPS signal can be described
by the channel parameters (fciode,k7¢iode,k’ ciarr,k’(biarr,k)
which are intimately related to the Receiver state X through
line of sight projections. While the received GPS signal can
be described by the Receiver state, the signal replica can be
generated from the Receiver state. The objective in DTE is
then to search for the best estimate of the Receiver state
that produces the signal replica giving rise to the highest
correlation against the received signal. As for the databit
sequence D'(t), our research platform, PyGNSS performs
databit wipeoff with 20ms coherent integrations.

The four-step process that begins the search for the best
estimate of the Receiver state is given in Fig.1. The first
step is performing the correlations and FFTs. To speed up
the search process, we split the underlying parameter set into
two: c6t and cdt. The correlations help search through cit,
while the FFT spectrums help search through cdt. As such,
carrier wipeoff is performed before the correlations and code
wipeoff is performed before the FFTs. The second step is
generating the candidate timing error vectors. The third step
is assigning values from the correlations and FFT spectrums
to the respective candidate timing error vectors. The fourth
step estimates the error vector e as the weighted mean of
the candidate timing error vectors. The error vector and the
error noise covariance matrix W are then used as inputs into
the joint timing and tracking Extended Kalman Filter (EKF).
Fig.2 describes the processes involved in the EKF two-step
update process. The EKF measurement update and time update
equations are also given as follows:

The EKF measurement update at epoch k:

e : error input vector (8)

= [Acdt, Acot]”

W . error noise covariance input matrix )

K : Kalman gain matrix (10)
=S HT(HS HT + W)t

AX : state error vector (11)
= Ke

S predicted state error covariance matrix

H : geometry matrix (12)
= I5,2x2 identity matrix

X}, : corrected state vector (13)
=X +AX

Y : corrected state error covariance matrix (14)
= —-KH)S,

The error noise covariance input matrices are estimated
using 20 past error input vectors. The coherent integration
and EKF update interval, AT, are the same and set to
AT = 0.020s. PyGNSS performs navigation bit wipe-off.



Step 1: Prepare Correlations and FFT Spectrums per Channel

I
Channel
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Step 2: Generate candidate timing error vectors
Receiver

timing error vectors varying clock bias
(i.e. fixed clock drift)

timing error vectors varying clock drift
(i.e. fixed clock bias)

Axl\xedcdij = [ ACd'V 0 ]1 Axl\xedch = [0’ ACdH ]I
ieacaiz = [ Acdty, 0] Xinoscaiz = [0 Acdl; ]
AX'\XEdCdi‘I = [ ACdtl ’ 0 ]T Axl\xedcdl.\ = [ 0’ ACdi\ ]T

Step 3: Assign values from Correlations and FFT Spectrums
to candidate timing error vectors

Receiver

assign values from correlations to AX,

assign values from FFT spectrums to AX,

fixedcdti ‘ fixedcdt,i

0| o

weight p(AX, o) = O+Q . P

weight p(AX, qeq,) = & O+.+@ ‘

Step 4: Estimate error input vector (e)
Estimate error noise covariance input matrix (W)

Receiver
estimate weighted mean AX. .. estimate weighted mean AX; . .
Axl\xedcd! =z “mxnxeam‘\mxmmi‘\/ T H(Ax'\xedcd!‘\) Axhxedcdl =r “(Axﬂnedwl‘\)Axﬂxedcdm/ z “(Aanemm)
error input vector (e) : [ Acdt, Acdt]™ = [ AX, oy » AXpegoa]”
error noise covariance input matrix (W) : 20-sample sample covariance of e

Fig. 1. Obtaining the error input vector e and error noise covariance matrix
W via a 4-step process.

time
/_&dﬁ"e\‘
Xp = X +AX | XkJrl:FXk -
K, AX Y= (I — KH)Z;C EA‘-&-] = FEA-FI +(2
- k+1
W,e, H AT = 20ms time

Fig. 2. Timeline of the processes involved in the EKF two-step update process.

The EKF time update equations at epoch k + 1:

X k+1 : predicted state vector (15)
= FXy
2k+1 : predicted state error covariance matrix  (16)
=FYFT +Q
F : state propagation matrix a7
= F(AT)
B [1 AT}
0 1
AT : update interval, 0.020 (s) (18)
Q) : state process noise covariance matrix 19)

F{g (cxoa,)% F

o, : allan deviation of the frontend oscillator, (s)

B. DTE with Vector Discriminator and Control Loop Filter

DTE with the vector discriminator is a special and simplified
case of DTE with the vector correlator. It uses only 4 candidate
timing error vectors: Early’, ’Late’, "Fast’ and ’Slow’, where
’Early’ and ’Late’ varies ¢t while "Fast’ and ’Slow’ varies
¢t . Tt works similar to Delay Lock Loop’s (DLL) Early-
Late (E-L) code phase error discriminator and Frequency
Lock Loop’s (FLL) carrier frequency error discriminator. The
discrimination results in the cdt and ¢ domain can then be
passed into the EKF or two simple control loop filters similar
to DLL and FLL.

III. EXPERIMENT AND ANALYSIS

This section describes the experiments performed using the
first implementation (II-A) of DTE. We are still in the process
of analysing the data from the alternative implementation
(II-B) of DTE.

A. Experiment Setup

In this paper, we verify the robustness of DTE via the
simulation of malicious activities in the signal environment.
Among many different types of attacks, we have chosen to
simulate meaconing and jamming to demonstrate the ability of
DTE to mitigate these intrusions. A data set is first collected
under benign, open sky conditions then processed to simulate
attacks. This attacked signal is then fed into both DTE and
traditional tracking algorithms for performance comparison.
The “severity” of the attacks was systematically adjusted and
the results evaluated.

Data collection was done on the roof of Talbot Labora-
tory, University of Illinois, using a Universal Software Radio
Peripheral (USRP) connected to a Chip-Scale Atomic Clock
(CSAC), with which the raw complex voltage is recorded and
prepared for post-processing. Fig.3 Data processing in soft-
ware was conducted using our research platform - PyGNSS.

The interference simulation process is laid out as follows:

« Meaconing: A meaconing attack is simulated by gener-
ating a superposition of the original signal with a delayed
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Fig. 3. Data collection equipment; only the red receiver is in use.

version of the same signal, creating a conflicting time-of-
arrival (TOA). The strength of the meaconing attack is
adjusted by varying the power ratio between the original
signal and the delayed version.

o Jamming: To simulate jamming, a random complex
voltage V' = Acos ® + jAsin ® is added to the original
signal, where A ~ N (0,04) and ® ~ U(0,2n).
This white noise with a varying standard deviation of
amplitude o4 adjusts the level of jamming, from fairly
light to irrecoverably severe.

B. Results and Analysis

Fig.4 depicts the ability of both DTE and the traditional
scalar tracking algorithm to track the frequencies of code, f,
and carrier, f;. As the signals are “clean” and not tampered
with, it can be observed that both f. and f; converge to
an oscillation within a small range shortly after the receiver
launch at ty = 36s. We would like to point out that the noise
seen in the scalar tracking plot is due to a shorter coherent
integration period of 1ms as compared to 20ms used in DTE.
In a revised draft, we would use 20ms coherent integration
period for both algorithms.

Before the impact brought by meaconing and jamming
attacks is analysed, one last note goes to the choice of data;
that is, for the remainder of the paper, Fig.4 included, we
use PRN 7 to demonstrate the frequency tracking aspect of
the receivers’ performances. This is done without loss to
generality as all PRNs have demonstrated similar behaviour
in our experiment settings. We may now proceed.
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Fig. 4. Doppler frequencies are easily tracked with both DTE and scalar
tracking when interference is absent. Shown above are the doppler frequencies
for PRN 7. The red line symbolizes the launch of the receiver tg.

1) Meaconing: In our paper, the meaconing attacks are
simulated by shifting the clean signal, collected on the roof,
by 3 samples (with the SMHz sampling rate this is roughly
equivalent to 180m) and overlapping it with the original signal.
That is, the receiver will receive 2 completely identical signals,
0.6 microseconds apart. We then give this attack signal varying
gains GG and evaluate how well DPE and scalar tracking reject
these intrusions. 5 shows the frequency tracking process of
both DTE and traditional scalar tracking. After the launch of
the receiver at tg = 36s, a few traces, such as an increasing
amplitude of oscillation and sudden spikes, provide us with
hints that scalar tracking may already be operating under
stress. On the other hand, there are no such signs for DTE.
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Fig. 5. Meaconing attack with gain G = 0.5. Minor irregularities can be
observed in the scalar tracking plot.

As the attack gain is increased to 0.85, shown in Fig.6,
those irregularities becomes more apparent, and to the extent
that the performance of a traditional GPS receiver would start
to suffer. On the other hand, the frequency tracking conducted
by the DTE has been largely unaffected.

Indeed, frequency tracking is only one aspect of the gener-
ation of a timing solution, and the picture is not full without
examining the correlogram of the vector correlator, shown in
Fig.7 and Fig.8, from which we conclude that the DTE would
still be capable of generating a correct timing solution since
the correlation peak is still situated at the origin, suggesting no
error. In addition, also noticeable from the correlogram of the
vector correlator is the meaconing attack near 180m for the



+1.022995¢6

DTE Code Frequency f,.”

DTE Carrier Frequency /"

5
4
3
2
1

-3255

3260

H H
g ot Hrogtonntieiad| 8
2 2 3265
g H
-3270
35 36 3 39 El -2 35 36 39 K
Time elapsed (s) Time elapsed (s)
,+1.022995e6 _Scalar Tracking Code Frequency £ Scalar Tracking Carrier Frequency 7.7
6 3250
o5 e
B Z -3260
54 5
H 2 -3265
$3 )
£, &
-3275
1 -3280
35 3% 37 E3 3 r 35 36 37 E 3 a

“Time elapsed (<)

Time elapsed (s)

case. As the signal-to-noise ratio drops to zero (ie. the jamming
noise carries approximately the same energy as the signal
itself), the traditional method, scalar tracking, starts to lose
track of the code and carrier frequencies, f. and f;. This is
shown in Fig.9, where it can be observed that the jamming
noise was carried over to the frequency measurements after
the receiver launch at ¢y = 36s.
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Fig. 6. Meaconing attack with gain G = 0.85. More irregularities are now
present.

0.6 microseconds delay of the meaconing signal. This makes
the confident early detection of meaconing possible.
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Fig. 7. Correlation peak for clock bias remains correct under meaconing attack
with gain G = 0.85. Also noticeable from the above plot is the meaconing
attack near 180m for the 0.6 microseconds delay of the meaconing signal.
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Fig. 8. Spectra peak for clock drift is unaffected by the meaconing attack
with gain G = 0.85. The meaconing signal does not contain a difference in
time drift. The spectra was also generated with code wipeoff based on the
current clock bias which is the tracked non-meaconed clock bias.

2) Jamming: The addition of jamming signals onto our
clean signal has created a similar outcome as the meaconing

Fig. 9. Observed noisy frequency measurements for scalar tracking when
jamming SNR =~ 0dB

Scalar tracking was unable to track the code and carrier fre-
quencies as the signal environment turns more hostile; Fig.10
Fig.11, and Fig.12 all corroborate this point as the values of
fe and f; become more noisy and diverged from the accurate
values; in contrast, the DTE produces a consistent tracking
performance even under these challenging circumstances.
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Fig. 10. Jamming attack with SNR ~ —5dB

It is worth noting that the frequency tracking diverges
more rapidly under jamming attacks than under meaconing
ones, since in our experiments, meaconing attacks are simply
“replaying” the original signal with a short delay, and the
Doppler frequency would thus not change considerably over
that period of time; on the other hand, jamming attack is the
addition of a white noise, and the frequency tracking ability for
traditional receivers is hence dramatically degraded. Similar to
the previous demonstrations, the DTE correlograms are shown
to certify its ability to properly generate navigation solutions
in these challenging scenarios.
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Fig. 13. Correlation peak for timing difference under SN R ~ —10dB

IV. CONCLUSION

In summary, GPS time synchronized PMU measurements

are a great aid to the control and analysis of the electrical
power grid. However, this also presents a mode of attack on the
power grid through disrupting the GPS time synchronization.
As such, PMU measurements are not used in the direct, real-
time control of the power grid.

For this reason, we present Direct Timing Estimation (DTE)
for the reliable, robust and secure GPS-based time transfer
to PMUs. In order for this to be a viable practical solution,
we proposed a novel, effective and efficient implementation
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Fig. 14. Spectra peak for time drift under SNR ~ —10dB
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Fig. 16. Spectra peak for time drift under SNR ~ —15dB



of DTE. Following that, we demonstrated DTE’s robustness
to hostile attacks as compared to traditional scalar tracking
through experimental simulations. DTE remains operational
when traditional scalar tracking fails to generate the accurate
timing solution.
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