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Software defined networking (SDN) is an emerging tech-
nology for controlling flows through networks. Used in the
context of industrial control systems, an objective is to de-
sign configurations that have built-in protection for hard-
ware failures in the sense that the configuration has “baked-
in” back-up routes. The objective is to leave the configura-
tion static as long as possible, minimizing the need to have
the controller push in new routing and filtering rules We
have designed and implemented a tool that enables us to
determine the complete connectivity map from an analysis
of all switch configurations in the network. We can use this
tool to explore the impact of a link failure, in particular
to determine whether the failure induces loss of the ability
to deliver a flow even after the built-in back-up routes are
used. A measure of the original configuration’s resilience to
link failure is the mean number of link failures required to
induce the first such loss of service. The computational cost
of each link failure and subsequent analysis is large, so there
is much to be gained by reducing the overall cost of obtain-
ing a statistically valid estimate of resiliency. This paper
shows that when analysis of a network state can identify all
as-yet-unfailed links any one of whose failure would induce
loss of a flow, then we can use the technique of importance
sampling to estimate the mean number of links required to
fail before some flow is lost, and analyze the potential for
reducing the variance of the sample statistic. We provide
both theoretical and empirical evidence for significant vari-
ance reduction.
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1. INTRODUCTION
The computer/communication networks in industrial con-

trol systems (ICS) are unlike those in enterprise networks.
An ICS often has real-time requirements, it always has safety
requirements, and in the case of networks used in electrical
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utilities subject to NERC-CIP regulations, has requirements
related to provable limited access to so-called “critical as-
sets”. Software defined networking [11] (SDN) is an emerg-
ing technology with great promise for aiding the design of
ICS networks. A controller with a global view of the network
is responsible for creating and installing routing and filter-
ing rules into the network’s collection of dumb switches. A
standard called OpenFlow exists for expression of the rules
and the interaction between controller and switches. Mo-
tivated by problems in networks for data centers, SDN’s
common application is for switches to dynamically commu-
nicate routing needs to the controller (e.g., first appearance
of a flow) and in response the controller creates and installs
rules in multiple switches to address that need, but also
achieve system-wide properties such as load-balance.

SDN can be used differently in ICS, there is is value keep-
ing switch configurations static. ICS network engineers like
to know exactly what their networks are doing, and for the
purposes of NERC-CIP audits, explaining a static set of
switch rules to an auditor is possible, while trying to an-
alyze an SDN controller program which dynamically gen-
erates switch rules seems a bridge too far for all involved.
Instead, one can engineer all of the configuration rules for
all of the network switches in such a way that the flows
through the network have pre-defined properties (which we
will sometimes call “policies”). The rules are installed when
the network comes up, and to the greatest degree possible
the switch configurations are left unaltered for as long as
possible.

There is a challenge though, in that if the physical infras-
tructure fails (e.g., a link, or a switch), then some interven-
tion by the controller might be needed to restore full func-
tionality. Fortunately there is a mechanism in the OpenFlow
specification that supports so-called “fast fail-over” in which
a switch at the point of egress consults a prioritized table of
links and pushes the frame through the live link with high-
est priority. Thus when a link drops, the switch can re-route
according to this table without consulting the controller. Of
course, careful construction of flow rules is needed to ensure
that that local action still leads to ultimate delivery of the
frame to its intended destination.

It is relatively straightforward to craft SDN rules which
ensure that the failure of any single link can be tolerated,
in the sense that every flow that formerly crossed that link
is still delivered after following the fast fail-over link which
covers for the failure. Beyond that, there are unresolved
algorithmic issues in crafting configurations that ensure tol-
eration of any 2 (or more) link failures. Still, we don’t really
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anticipate that the network tolerates only one link failure;
while subsequent failure of the 1st link’s fail-over back-up
might indeed cause one or more flows to no longer be routed,
there are many links that are logically and physically sepa-
rated from the first link whose failure could be tolerated just
as if they’d been the first failed link. We are led then to a
question whose answer this paper supports: how resilient is
the network configuration to link failures, where a measure
of resilience is the number of link failures may occur before
some flow that is supported by the original configuration
is no longer supported, what we call a loss of service. A
moment’s reflection though shows that this question needs
refinement. One measure might be the absolute minimum
number of link failures that can be tolerated, another might
be the average number of randomly chosen failures that can
be tolerated. We opine that the second version gives a better
overall sense of network resilience to normal “wear and tear”
failures, while the first might be better to access resilience to
attacks by a directed adversary. Note that inducing loss of
service through a sequence of link failures in no way implies
that the flow cannot be delivered by some other configu-
ration. The point is that when loss of service occurs, new
configurations are required of the controller, and in the ICS
context we wish to interact with the controller as little as
possible.

This paper considers a potential optimization that arises
when using Monte Carlo sampling to evaluate a given con-
figuration by estimating the mean number of link failures
to loss of service. The standard technique would be to ran-
domly sample sequences of link failures until loss of service
occurs, and note the number of link failures involved. Statis-
tical analysis of the sample mean and sample variance yields
a confidence interval around the estimate. The technique
we develop here does something different called importance
sampling, which has the effect of tending to make the confi-
dence interval around the mean smaller, for the same num-
ber of trials. From a statistical point of view this means that
importance sampling is more efficient; for a stated statistical
accuracy importance sampling tends to require fewer trials
to achieve that accuracy than does ordinary sampling. The
challenge when designing importance sampling strategies is
to do so in a way that the sample variance is provably smaller
than ordinary sampling. This is often a challenge, and our
presentation of a importance sampling strategy for this prob-
lem with analysis of the variance reduction it provides is the
key contribution of this paper. We also provide preliminary
experimental evidence that importance sampling can reduce
the number of samples needed to achieve a given statistical
accuracy by an order of magnitude.

2. BACKGROUND
A network orchestrates packet delivery among all network

devices by using packet headers. Its configuration drives
the two functional components of the networking software:
control and data planes. The control plane decides what
packet forwarding and header transformations need to occur
at network devices, while the data plane performs the actual
actions on packets. In the traditional networking architec-
ture, control and data planes coexist on individual network
devices, thus requiring manual instrumentation of config-
uration at individual, heterogeneous devices to implement
policy in a variety of configuration semantics. However, the
SDN architecture simplifies access to the network config-

uration by logically centralizing the control-plane state in
a device called the controller. This centralized state then
drives the network devices that perform homogeneous for-
warding plane functions [2]. The forwarding plane functions
and the interface between controller and networking device
are standardized. The OpenFlow specification [3] is one
such standard. It provides an abstract model of a network
switch. The OpenFlow switch model specifies the opera-
tions it performs and its interface with the controller. The
packet-forwarding and modification behavior of a switch is
driven entirely by the rules installed on it by the controller
as part of the network configuration.

The OpenFlow rules support a fast fail-over feature. This
is implemented by allowing the rules to choose an output
port for a specified set of packets as a function of liveness
of links. Hence, it is possible that the configuration may
effectively utilize the topological redundancy by specifying
rules that reroute traffic if links fail, without the intervention
of the controller. However, in order to guarantee that the
network configuration provides whatever degree of resilience
to link failure is required, it needs to be validated. Such
validation requires careful modeling of the network and the
results of link failure events. Hence, for a network compris-
ing of OpenFlow switches, a model that predicts the entire
network’s behavior needs to be constructed. This model
needs to take into account the network state and construct
data structures that allow for such validation tractably as a
function of network’s topology and configuration.

In order to model behavior of a network on per-packet
basis, Jin et. al. [6] and Lantz et. al. [12] proposed ap-
proaches based on discrete-event simulation and container
based emulation respectively. These approaches can predict
the behavior of a network, given a configuration and offered
traffic, but do not consider issues of the resiliency offered by
a configuration.

Peyman et. al [9][8] and Khurshid et. al.[10] developed ab-
stractions for representing sets of packets that are processed
similarly by individual switches and thus making solution
solvable in near real-time for small campus-sized networks.
However, neither of these approaches support modeling of
rules that support the fast fail-over feature. Thus, we have
focused on exhaustive policy validation in an SDN using ag-
gregated sets of packets when fast fail-over rules are used.

The tool we have developed, Flow Validator , is able to
validate many properties of an SDN configuration. One of
these is the ability of the configuration to tolerate failures of
network links. This paper addresses how Monte Carlo sim-
lulation used to guide evolution of Flow Validator eval-
uations can estimate resiliency to link failure, measured as
the mean number of links that must be failed before some
flow that was supported by the pre-failure configuration is
no longer supported. Modification of Flow Validator data
structures is expensive with each link failure, and so it is
worth-while to explore ways of reducing the number of link
failure computations needed to derive a useable estimate.

Flow Validator data structures expose much informa-
tion about all flows through the network. We can analyze
those data structures to identify which links, if failed next,
will induce loss of service. While the update of data struc-
tures to implement a link failure is expensive, identification
of this set of vulnerable links is comparatively much much
faster. The main result of this paper is that this information
can be used in an importance sampling scheme for resiliency
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estimation and provably reduce the variance of the sample
statistic.

3. SOFTWARE DEFINED NETWORKS

3.1 The Network Model

Figure 1: An SDN with a four switch topology connected in
a ring.

In an SDN, as Figure 1 depicts, each switch is connected
to the controller through a management port. The controller
uses this port to gather information about link status and
to place forwarding rules on each switch. The information
from individual switches is used to construct the state of
the entire SDN. The controller makes this state available
through a ”northbound” API to be used by the applications.

This logically-centralized state comprises a latest snapshot
of SDN’s topology as well as the data-plane configuration of
each switch. Thus, our offline validation application (called
Flow Validator) uses this API to access the snapshot of SDN
state. The state is used to construct a model to predict the
behavior of the SDN on all traffic. If the state of the SDN
changes due to a modification of forwarding rules at a switch
or a link failure/restoration event, a fresh snapshot of the
the state is obtained and any changes are accommodated in
the predictive model, incrementally.

3.2 The Switch
In order to predict the behavior of the entire SDN, we

need to build a model for individual switches. We use the
OpenFlow 1.3 [3] specification to construct one such model
for switches, which provides a fast-failover feature.

An SDN switch contains a table processing pipeline and
a collection of physical ports. Packets arrive at one of the
ports, and are processed by the pipeline comprised of one
or more flow tables. Each flow table contains multiple rules.
Each flow rule is an atomic unit of decision-making regarding
packets going through the pipeline. The decisions take the
form of actions. During the processing of a single packet,
these actions can modify the packet, forward it out of the
switch via one or more of switch ports, or drop it. Below we
provide more details regarding the OpenFlow specification
that are relevant to our model of the switch.

3.2.1 Flow Rule

The set of actions that a switch applies to a packet is
governed entirely by flow rules. Each flow rule has two parts:

• Match: A set of packet header field values that the
given rule would apply to. Some packet header fields
are characterized by single values (e.g. VLAN ID:
1, or TCP Destination Port: 80), while others can
take a range of values (e.g. Destination IP Addresses:
10.0.0.0/8). If a packet header field is not specified
then it is considered to be a wildcard for the purposes
of match operation.

• Instructions: A description of the control operations
performed by the flow rule to a matched packet. A
switch can apply a variety of actions on the packet.
These actions include:

– Header Modification Actions: These include ac-
tions that modify existing protocol headers by
adding or removing part of the headers.

– Output Actions: These include actions that spec-
ify the ports on which the packet will be sent out.
This can either be a set of ports, or a first live
port in a sequence of ports.

3.2.2 Flow Table Pipeline
A switch processes the arriving packets through a pipeline

of one or more flow tables. Each flow table is a collection of
flow rules sorted by the priority in which they are matched
against an arriving packet. A packet matches at most one
flow rule in a flow table that has the highest priority.

When a packet arrives at the switch, it is associated with
an empty action set and matched against rules in the first
table. The action set can be manipulated by instructions
in the matching flow rules in each table. Furthermore, the
instructions associated with the matching flow rules can se-
lect the next table that will process the packet. Before the
packet is sent to the next table, the matching flow rule can
apply an action to it. If at any table, a matching flow rule
for the packet is not found, then the switch stops process-
ing the packet and actions in the associated action set are
applied to it. If the action set is empty, then the packet is
simply dropped.

The last table applied to a transiting packet chooses the
egress port through which the packet is pushed. The table
selected for the packet has a list of ports in priority order.
The first port in the list whose associated link is live is cho-
sen. Hence, it is possible that the configuration may effec-
tively utilize the topological redundancy by specifying rules
that reroute traffic if links fail, without the intervention of
the controller. However, in order to guarantee that the net-
work configuration conforms to a given policy in the face
of link failures, it needs to be validated. Such validation re-
quires careful modeling of the network and the results of link
failure events. Hence, for a network comprising of OpenFlow
switches, a model that predicts the entire network’s behavior
needs to be constructed. This model needs to take into ac-
count the network state and construct data structures that
allow for such validation tractably as a function of network’s
topology and configuration.

3.3 Header Space Abstraction
As evident from the operations of a switch previously, in

order model to its behavior and reason about properties of
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an SDN, it is crucial to model sets of packets. To that end,
Peyman et. al. proposed a geometric abstraction for rep-
resenting packet traffic called Header Space [9]. A typical
packet contains more than one protocol header, each serv-
ing individual control-plane functions. However, the header
space abstraction removes individual protocol semantics and
represents packets as a point in the {0, 1}L space, where L
is the total bit length of the packet headers.

Similarly, sets of traffic are represented as hyper-rectangles
in this space. These sets are expressed using wildcards for
individual bit positions in an L bit header space expression.
The utility of the header space abstraction is in its ability
to compactly define sets of traffic by using wildcards for in-
dividual bit positions in the header. Such definition of traf-
fic then allows set-theoretic operations such as intersection,
union, complementation on it.

3.4 Switch Transfer Function
Peyman et. al. proposed representing a switch as a Trans-

fer Function [9]. The transfer function is an abstract model
for operations performed by a switch on the input traffic pre-
sented at on one of its ports. The switch tranfers a subset of
traffic to one or more of its output ports. Beyond describing
the subset of traffic that arrives at the output port for a
corresponding input port traffic, the transfer function also
captures any modifications that the subset of input traffic
undergoes by the switch as specified by the OpenFlow spec-
ification [3].

3.5 Flow Validator Data Structures
The data structures we use and the analysis we employ

in Flow Validator for validating flows are well beyond the
scope of the present paper. However our purposes here we
point out that these data structures describe every possi-
ble flow through the SDN, and so expose the information
we need to characterize each link as one whose next failure
will induce loss of service, or not. The basic idea is as fol-
lows. Some switches connect to hosts, or to networks that
are not part of the SDN fabric, others connect only to other
switches. Thus there is a set H of switch ports connected to
links that provide SDN ingress and egress. For every given
port p ∈ H we present a header space that has wildcards in
every dimension. Flow Validator pushes the abstraction
through the rules and tables in the switch. This will frag-
ment the initial abstraction: only some subspace will find
rules that admit that subspace, different header modifica-
tions and output actions will be applied, different subspaces
may be directed to other egress ports. Following application
of the header space abstraction to one switch, we have gener-
ated a number of header space abstractions on egress links;
each such abstraction is presented to the switch at the other
end of the link and the process continues, until we discover
the complete description of all flows that enter the SDN at
the initial ingress port and are delivered to any egress port.
Intuitively, we have computed all flows the SDN will route;
we have identified for every link the set of flows that (for the
given state of the network) cross that link. With supplemen-
tary analysis that is outside of the scope of this paper we can
analyze these data structures and for every link determine
whether if that link were to fail, every flow using that link
reaches its destination somehow after using the back-up link.
An ability to make this differentiation relatively efficiently
is a crucial aspect of our approach.

Following selection of a link to fail, when the chosen link
is in the set of links whose failures do not induce loss of
service, Flow Validator needs to compute the impact that
that failure has on all the routes impacted by the failure.
This step is computationally expensive; not only are routes
and their backups recomputed, other data structures that
support compliance of the post-failure SDN with other user-
defined policies are also recomputed. This expense helps mo-
tivate our work in reducing the amount of simulation work-
load needed to estimate resiliency as we have defined it.

4. MONTE CARLO EVALUATION
A body of sophisticated work exists on using Monte Carlo

to estimate network reliability, e.g. see [1] and its references.
The model we have for SDN’s is in some ways simpler than
such work (e.g., to the extent that we are concerned with link
failure probabilities, ours are equal and other work consid-
ers various more complex relationships), and in some ways
harder (e.g., the connectivity of interest to us is that pro-
vided by software configuration, and is dynamic, whereas
the more typical model of network connectivity is purely
topological.)

The idea behind fast fail-over paths is to provide a means
by which link failures can be tolerated without calling the
controller. A measure of the link failure resiliency then is
the mean of the random variable NF , defined as the number
of link failures that can occur until the controller is called
to find new routes.

We can express E[NF ] precisely, but first need to identify
some notation. Let L be the set of all switch links with
cardinality N = |L|, let 2L denote the power-set (set of all
subsets) of L, and for a given S ∈ 2L let Seq(S) be the set
of all sequences constructed from permutations of S. For
example, if S = {l1, l2, l3} then (l2, l1, l3) ∈ Seq(S) and
(l3, l2, l1) ∈ Seq(S), along with four other unique sequences.
For a given sequence L = (l1, l2, . . . , lk) we will refer to sub-
sequences L0 = (), L1 = (l1), . . . ,Lj = (l1, l2, . . . , lj), and
so on.

For any S ∈ 2L and L ∈ Seq(S), we define an indicator
function φ(L) to have value 1 if failing links in the order
specified by L induces loss of service (else 0), and define
indicator function γ(L) to be 1 if φ(L) = 1 but φ(Lj) = 0
for all j = 1, 2, . . . , len(L) − 1 where len(L) is the number
of elements of L. In other words, L is minimal in the sense
that as links are failed in the sequence specified by L, the
first loss of service is induced by the failure of the last link.
We define

S = {L | γ(L) = 1}
to reference these sequences of interest.

Given a permutation LN of all links in L, there is ex-
actly one j for which γ(Lj) = 1, and we denote this index
by d(LN ) = j. We can express E[NF ] as the expectation
over all permutations LN , each permutation having equal
probability 1/N !:

E[NF ] =
∑
LN

d(LN )/N !.

We partition the permutations into equivalence classes, where

L
(1)
N and L

(2)
N are in the same class if and only if d(L

(1)
N ) =

d(L
(2)
N ) = k for some k, and the two permutations are iden-

tical in the first k links. That stopping prefix uniquely iden-

tifies the class. Given d(L
(1)
N ) = k we know that the first
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k− 1 links did not cause loss of service, while the kth selec-
tion did. Some care is needed in expressing the probability
of choosing the common prefix. For every sequence Li with
i links and γ(Li) = 0, let F (Li) denote the set of links not
in Li such that extending Li with a member of F (Li) in-
duces loss of service. The notation captures the dependence
of that set on the first i links chosen; different sequences
expose different sets of vulnerable links. Also let F̄ (Li) de-
note all links not in Li and not in F (Li). Now if we choose
a sequence of k links with the property that the last link
induces loss of service but none of the previous links do,
we can express the probability that a uniformly sampled N -
length sequence is a member of the equivalence class defined
by that prefix. This is obtained by multiplying the probabil-
ity ppre of sampling the specific prefix times the probability
ppost of sampling some specific sequence of N − k links that
are not in the prefix, times the number of such postfixes. To
set up a later comparison with a different distribution, we
express each term of the product ppre as the probability of
sampling from the set of links that do not induce loss of ser-
vice times the (uniform) probability of sampling a specific
link from that set. We likewise express ppost as the proba-
bility of sampling from the set of links that do induce loss
of service times the probability of sampling a specific link
from that set. Thus we express

pnorm(Lk) = Pr{sample sequence Lk}

= ppre · ppost ·
N−k−1∏

i=0

1

N − k − i · (N − k)!

=
( k−2∏

i=0

|F̄ (Li)|
N − i · pl(Li)

)
·
( |F (Lk−1)|
N − k + 1

· pf (Lk−1)
)

=

k−1∏
i=0

1

(N − i) (1)

where for notational convenience and future use we define

pf (Li) = 1/|F (Li)|

and

pl(Li) = 1/|F̄ (Li)|

e.g., the uniform probability of sampling a particular mem-
ber of of F (Li) (alt., F̄ (Li)) at the (i+ 1)st step.

The point of this rigor is to show that pnorm(Lk) accu-
mulates the probability under uniform sampling of all full
length sequences that match in the prefix up to the kth se-
lected link, which first induces loss of service. Therefore if
we sample links until we select one that induces loss of ser-
vice, it is a valid sample of NF , with a probability given by
pnorm(Ld(L)). For a given k, the probability that NF = k is
given by the sum over all k-length members of S, call this
subset Sk, so that

E[NF ] =

N∑
k=1

∑
Lk∈Sk

k · pnorm(Lk)

=
∑
L∈S

len(L) · pnorm(L). (2)

Equation 2 shows us that Monte Carlo simulation can be
used to estimate E[NF ] as follows. An experiment is a se-
quence of steps where with each step an un-chosen link is
randomly selected, and the existing sequence is extended

by this selection. On selecting the jth such link, analysis
determines whether the failure of that link induces loss of
service, and if so the experiment stops. Effectively the simu-
lation determines whether, given the sequence construction
after j − 1 steps, the chosen link is sampled from F (Lj−1)

(uniformly) or from F̂ (Lj−1), also uniformly. In the former
case value j is the sample of NF that is recorded, and then
another experiment may be run, independent of any other;
in the latter case the experiment continues until the stopping
condition is encountered. After m experiments the sample
mean of the recorded values is our point estimate of NF ,
and a confidence interval can be constructed around it in
the usual way. For a given N -length sequence LN the step
where the experiment stops is deterministic, d(LN ), and so
conditioned on this we know that for i = 1, 2, . . . , d(L)− 1,
the sample must draw uniformly at random from F̄ (Li−1),
and the last sample must draw uniformly from F (Ld(L)−1).
This is reflected in equation 2.

A class of techniques exist for reducing the overall cost of
estimating resiliency called variance reduction. In these one
conducts the experiments in a way that reduces the variance
of the estimator.

4.1 Variance of Estimators
Basic statistical theory teaches that the sample mean we

construct from repeated un-biased experiments is a random
variable and has a mean that is the same as the mean of the
random variable of interest (here, NF ). The confidence we
have in a particular sample mean is expressed formally as a
confidence interval. The smaller the width of the confidence
interval, the greater the confidence we have; the smaller
the variance of the probability distribution associated with
the sample, the smaller the width of the confidence interval
tends to be for the same number of samples.

Classically, whenm independent repetitions are performed
with m measurements x1, x2, . . . , xm, the sample mean µ̂ =
(1/m)

∑m
i=1 xi is computed, with confidence interval

µ̂± t∗ · s√
m− 1

where s2 =
(∑m

i=1(xi − µ̂)2
)
/(m − 1) is an unbiased es-

timator of the sampling distribution variance, and t∗ is a
critical value related to the certainty desired. The smaller√
s2/(m− 1), the tighter the interval around µ̂. One com-

monly seeks to achieve a confidence interval width that is
10% or less of the sample mean. The expression above re-
veals the limited impact of reducing the confidence interval
width by increasing the number of samples: to make the
confidence interval smaller by half requires that the number
of samples be a factor of four larger.

The variance of NF is given by

var(NF ) =
∑
L∈S

(len(L)− E[NF ])2 · pnorm(L)

=
∑
L∈S

(
len(L)2 · pnorm(L)

)
− E[NF ]2 (3)

where the expectation is taken with respect to the uniform
sampling distribution.

The objective of variance reduction techniques is to craft a
sampling distribution such that the mean value of the sam-
ple mean random variable is that of the random variable
of interest (again, here NF ), and that the variance of the
sample distribution (estimated by s2) is smaller than that
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of ordinary random sampling, so that the confidence inter-
val tends to be smaller for the same number of experiments.
This paper develops ideas from importance sampling to ac-
complish this.

5. IMPORTANCE SAMPLING
Importance sampling is a different way to reduce the width

of the confidence interval, by reducing the sampling variance
s2. One application of the technique is to increase the pre-
cision of the confidence interval for a given number of sam-
ples, another application is to achieve a desired precision
using fewer samples. The problem motivating our work falls
in the latter category. It is computationally expensive to
execute an experiment, and so we seek means by which we
can reduce the number of experiments needed for a desired
accuracy.

Importance sampling has a long history, with reference as
early as the 1950s by Kahn and Marshall [7]. Description of
various techniques in general stochastic systems is reviewed
by Glynn and Iglehart [4], its application to rare event sim-
ulation detailed by Heidelberger [5], and to communication
systems by Smith, Shafi, and Gao [13]. Use of a variety of
variance reduction techniques (including importance sam-
pling) is covered by Cancela et. al [1]. Against the backdrop
of extensive literature on importance sampling, our work is
unique in its application to SDN, and in exploitation of sep-
arating links into the class of those that will induce loss of
service when next failed, and the class of those that don’t.

The basis for importance sampling is very simple. If L is
a random sequence with discrete components having proba-
bility mass function f(y) = Pr{L = y}, and g is any other
probability mass function on the same space with the prop-
erty that g(y) > 0 whenever f(y) > 0, then if β is a scalar
valued function of L we can write the expected value of β(L)
as

Ef [β(L)] =
∑
y

β(y) · f(y)

=
∑
y

β(y) · f(y)

g(y)
g(y)

= Eg

[
β(L) ·R(L)

]
(4)

where Ef denotes the expectation with respect to probabil-
ity function f , Eg denotes the expectation with respect to
probability function g, and the likelihood ratio function is
R(y) = f(y)/g(y). This equivalence tells us that an un-
biased estimator of Eg[β(L) ·R(L)] is also an unbiased esti-
mator of Ef [β(L)].

Applying these notions to our problem, the random vec-
tors L are members of S, i.e., sequences of link failures where
the last link failed induces loss of service. f(L) = pnorm(L)
is the probability of choosing that sequence of links. To
apply importance sampling, at each step when we select a
link, the probability distribution need not be uniform, and
can depend on previously selected links. We denote the se-
quence of the first j links by Lj (with the boundary case of
L0 = ()). Now if Lj does not cause loss of service and λ is
any link not in Lj , we must allow for the possibility that the
biased sampling chooses λ, because the unbiased sampling
can. We denote the probability under our sampling scheme
of choosing λ to extend Lj by psamp(λ | Lj). Therefore the
probability of sampling sequence L = (l1, l2, . . . , lk) ∈ S

under importance sampling is

pskew(L) = psamp(l1)

k∏
i=2

psamp(li | Li−1).

Once a link is chosen that induces loss of service the sam-
pling stops, and we can think of pskew(L) as the probability
of choosing some member of the equivalence class defined
by prefix L. With this interpretation we see that the skewed
sampling is referring to the same underlying sample space
as the uniform sampling does, and is just an alternative as-
signment of probabilities to all full permutations of links.

When a sampled link induces loss of service we need to
compute the likelihood ratio R(L) = pnorm(L)/pskew(L),
and use len(L) ·R(L) as the value of the experiment.

While the intention of importance sampling is to reduce
the variance in the sample mean, it is possible to actually
increase the variance. Denoting the random sample under
importance sampling by µ̂, the variance of µ̂ is given by

var(µ̂) =
∑
L∈S

(len(L) ·R(L)− E[NF ])2 · pskew(L)

=
∑
L∈S

(len(L) · pnorm(L)

pskew(L)
)2 · pskew(L)− E[NF ]2

=
∑
L∈S

(
len(L)2 ·R(L) · pnorm(L)

)
− E[NF ]2. (5)

The objective is to define a skewed sampling strategy such
that var(µ̂) < var(µ). Subtracting the expression in equa-
tion 5 from the variance of NF (equation 3) we see that
variance is reduced when the right-hand-side of the equa-
tion below is positive:

var(µ)− var(µ̂) =
∑
L∈S

len(L)2(1−R(L)) · pnorm(L) (6)

=
∑
L∈S

len(L)2(1− pnorm(L)

pskew(L)

)
· pnorm(L)

This expression gives a clue to a skewed sampling approach
that reduces variance. Suppose that pskew(L) could be con-
structed to be proportional to len(L) · pnorm(L). Applying
this to the expression above we obtain

var(µ)− var(µ̂) =

=
∑
L∈S

len(L)2(1− pnorm(L)

len(L) · pnorm(L)/u

)
· pnorm(L)

=
∑
L∈S

len(L)2(1− u

len(L)

)
· pnorm(L)

=
∑
L∈S

(
len(L)2 − u · len(L)

)
· pnorm(L)

= E[N2
F ]− u · E[NF ] (7)

where u is the normalization constant

u =
∑
L∈S

len(L) · pnorm(L) = E[NF ].

Substitution of u back into equation 7 makes the right-
hand-side equal to var(µ), which implies that this particular
(unrealizable) choice for pskew(L) yields an estimator with
no variance! However, we can use this insight to construct
pskew(L) ≈ len(L) · pnorm(L)/E[NF ].
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From equation 7 we see that if constant of proportionality
u is chosen with u < E[N2

F ]/E[NF ] we should see a reduc-
tion in the sampling variance. The only constant of propor-
tionality that exactly works is the unrealizable u = E[NF ].
In our approach we will construct pskew dynamically, with
each sampled link.

6. SKEWED SAMPLING STRATEGY

6.1 Method
We’ve seen that the strategy of trying to make pskew(L)

proportional to len(L) · pnorm(L) has the potential for vari-
ance reduction. We design a sampling strategy based on
this observation. Earlier we saw that we can view an ex-
periment under uniform sampling as a sequence of Bernoulli
trials, where, at the jth trial, while we sample uniformly
from among all un-sampled links we are implicitly choosing
from set F (Lj−1) with probability |F (Lj−1)|/(N − j + 1),
then choosing a specific link from that set with probability
pf (Lj−1), thereby terminating the experiment. Under uni-
form sampling no specific knowledge of the membership in
F (Lj−1) or F̄ (Lj−1) was required. Suppose though that the
size of these sets could be determined explicitly. At the jth

step, we could change the probability of selecting F (Lj−1)
to be any αj ∈ [0, 1] we chose. We can then modify the ex-
pression for pnorm(L) to create an expression for pskew(L):

pskew(L) = αd(L) · pf (Ld(L)−1) ·
d(L)−2∏

i=0

(1− αi+1) · pl(Li)

(8)

recalling that pf (Ld(L)−1) = 1/|F (Ld(L)−1)| and pl(Li) =
1/|F̄ (Li)|.

By careful selection of the αj we can try to make pskew(L)
proportional to len(L) · pnorm(L) when L ∈ S. The choice
of αj will depend on the state of sampling prior to step j;
what is needed is a procedure that, given Lj−1, we compute
αj and then if possible, choose the next link from F (Lj−1)
with probability αj .

The qualifications above on selecting and using αj follow
from the observation that, while in principle given a con-
stant proportionality u and L ∈ S one can ascribe probabil-
ity len(L) ·pnorm(L)/u to L, that does not necessarily imply
that the method we’ve described to create a skewed distribu-
tion is always able to accomplish that objective. The point
is subtle but important. As a consequence, as we construct
the skewed distribution we need to ensure that it has non-
zero probability on every sequence for which the uniform
distribution has non-zero probability. For example, we will
see in the equations used tαi the possibility for the equa-
tion to give a value greater than or equal to 1. For a value
which is supposedly a probability values in excess are obvi-
ously problematic; the case where the equation for αi = 1
and F̄ (Li−1) 6= ∅ is equally problematic, for it cuts off the
possibility of sampling from F̄ (Li−1), which the uniform dis-
tribution can, and so must then the skewed distribution.

These issues not withstanding, we will do what we can to
cause each L to have pskew(L) ∝ len(L) · pnorm(L), while
ensuring that the pskew distribution has support everywhere
that pnorm has support. Details will follow.

We must first start with a normalizing constant u, which
we earlier saw might yield significant variance reduction if

u ≈ E[NF ]. We therefore estimate E[NF ] analytically some-
how, or do a few normal random trials to estimate E[NF ].

Next we observe that if F (Li) is empty, then αi+1 = 0.
As we sample then, the step where F (Li) is first non-empty
is important. Formally, given sequence L, we define b(L) to
be the smallest index i for which F (Li) is non-empty. We do
not induce loss of service at any step i ∈ [0, b(L)], so there
obviously pskew(Li) = pnorm(Li). However, things change
when i = b(L) + 1. If it should happen that F (Li) includes
all links, then there is no skewing to be done; we’ll sample
a link, it will induce a loss of service, and the experiment
will end. However if F̄ (Li) is not empty we get to choose
between the two lists, and αb(L)+1 will give the probability
of sampling from F (Lb(L)). We write

pskew(Lb(L)+1) = βb(L)+1 · pf (Lb(L)) ·
b(L)−1∏
i=0

1/(N − i)

which expresses the fact that when F (Li) is empty we are
sampling uniformly from all links. From this we express the
property desired of pskew(Lb(L)+1):

βb(L)+1 · pf (Lb(L)) ·
b(L)−1∏
i=0

1/(N − i)

=
(b(L) + 1) · pnorm(Lb(L)+1)

u
.

with solution

βb(L)+1 =
(b(L) + 1) · pnorm(Lb(L)+1)

u · pf (Lb(L)) ·
∏b(L)−1

i=0 1/(N − i)

=
(b(L) + 1) ·

∏b(L)
i=0 1/(N − i)

u · pf (Lb(L)) ·
∏b(L)−1

i=0 1/(N − i)

=
(b(L) + 1) · (1/(N − b(L)))

u · pf (Lb(L))

=
( b(L) + 1

u

)
·
( |F (Lb(L))|
N − b(L)

)
. (9)

There is no reason a priori why βb(L)+1 so expressed neces-
sarily satisfies 0 < βb(L)+1 < 1. When this inequality is sat-
isfied and F̄ (Lb(L)) 6= ∅ we will assign αb(L)+1 = βb(L)+1. If
it should happen that F̄ (Lb(L)) = ∅ then obviously we must
set αb(L)+1 = 1. The final possibility is that 1 ≤ βb(L)+1

and F̄ (Lb(L)) 6= ∅. We have to allow for the possibility
of sampling links from F̄ (Lb(L)), and so choose the next
link uniformly from among all links by assigning αb(L)+1 =
|F (Lb(L))|/(N−b(L)). The choice of αb(L)+1 establishes the
base for subsequent calculations of αj for j > b(L) + 1.

Continuing with the sampling, assuming no loss of service
is induced up through step j−1, we can assume that αi has
been appropriately defined for all earlier steps, and now seek
to compute αj . As with the first step we’ll define a variable
βj whose value will define αj in exactly the same circum-
stances as it did with αb(L)+1: 0 < βj < 1 and F̄ (Lj−1) 6= ∅.
From the requirement pskew(Lj) = j · pnorm(Lj)/u we set
up

βj · pf (Lj−1)

j−2∏
i=0

(1− αi+1) · pl(Li) =
j · pnorm(Lj)

u

which we rearrange to express βj as a function of αi with
i < j:
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βj =
j · pnorm(Lj)

u · pf (Lj−1)
∏j−2

i=0 (1− αi+1) · pl(Li)

=
j ·
∏j−1

i=0 1/(N − i)
u · pf (Lj−1)

(∏j−2
i=0 (1− αi+1) · pl(Li)

) (10)

=
( j
u

)
·
( |F (Lj−1)|
N − j + 1

)
·
( j−2∏

i=0

|F̄ (Li)|
(1− αi+1)(N − i)

)
where the last step follows from simple algebra after using
the definitions of pl(Li) and pf (Lj−1). As before, we cannot
in the general case assert that βj necessarily satisfies 0 <
βj < 1. Therefore, just as with αb(L)+1, we assign αj equal
to βj , 1, or |F (Lj−1)|/(N − j + 1), depending on whether
βj is a probability that allows for sampling from non-empty
F̄ (Lj−1), must sample from F (Lj−1) because F̄ (Lj−1) = ∅,
or is not a proper probability, respectively.

Note that for any given L ∈ S, the question of whether
pskew(L) = len(L)·pnorm(L)/u depends entirely on whether
αlen(L) = βlen(L). If so, the proportionality exists regardless
of the details of how αi with i < len(L) was defined. Equa-
tion 11 describes the requirements of proportionality, so that
when the solution of that equation is used for αlen(L), we
necessarily have pskew(L) = len(L) · pnorm(L)/u.

Upon selecting the kth link under the skewed sampling
and discovering that its failure induces loss of service, we
compute k times the likelihood ratio function and use that
as the value representing the experiment. This is given by

k · pnorm(Lk)

pskew(Lk)

= k ·
(∏k−2

i=0
|F̄ (Li)|
N−i

· pl(Li)
)
·
( |F (Lk−1)|

N−k+1
· pf (Lk−1)

)(∏k−2
i=0 (1− αi+1) · pl(Li)

)
·
(
αk · pf (Lk−1)

)
= k ·

( k−2∏
i=0

|F̄ (Li)|
(1− αi+1) · (N − i)

)
·
( |F (Lk−1)|
αk · (N − k + 1)

)
which is a form that suggests means of stable means of com-
putation, provided that the αi values used at each step
are retained for use in this computation. That computa-
tion computes the ratio terms for each product index and
multiplies the ratios. A naive computation would divide a
very small number pskew(Lk) into another very small num-
ber pnorm(Lk), which is a calculation rife with numerical
issues.

The procedures described above will always create a skewed
distribution that gives non-zero probability to any sequence
that uniform sampling does. The degree to which that pro-
cedure yields reduction in variance depends on the structure
of the network, configuration, and choice of u. We next con-
sider those issues.

6.2 Variance Reduction
While the method we’ve described for constructing a skewed

distribution strives to create values of pskew(L) that are pro-
portional to len(L) ·pnorm(L), there will be L ∈ S for which
this is not true. Let SF be the set of L ∈ S for which
αlen(L) 6= βlen(L) from equation 11 or equation 9. For each
L ∈ SF define pprop(L) = len(L) · pnorm(L)/u, i.e., the
probability we would have liked to ascribe to L but could
not because the rules for defining αlen(L) selected βlen(L) = 1
or βlen(L) = |F (Llen(L)−1|/(N − len(L) + 1). Then for each

L ∈ SF define Rprop(L) = pnorm(L)/pprop(L), i.e., the like-
lihood ratio function value we’d ascribe to L if it had prob-
ability pprop(L). R(L) = pnorm(L)/pskew(L) as before.

The equations for βi never have a negative solution, so
the only time that αlen(L) describes uniform sampling rather
than βlen(L) is when 1 ≤ βlen(L). We can think of βlen(L) as
a factor by which we need to multiply another term in order
to make pskew(L) proportional to len(L) · pnorm(L)/u. But
since αlen(L) < βlen(L) we can assert the following.

Lemma 1. For every L ∈ SF , pskew(L) < pprop(L) and
so R(L) > Rprop(L).

Note that for L ∈ S/SF , R(L) = Rprop(L). Define ε(L) =
R(L)−Rprop(L), and observe that for all L ∈ SF , ε(L) > 0.
Recalling the derivation of the reduction of variance leading
to equation 7, we express

var(µ)− var(µ̂) =∑
L∈S/SF

len(L)2(1−R(L)) · pnorm(L)

+
∑

L∈SF

len(L)2(1−R(L)) · pnorm(L)

=
∑

L∈S/SF

len(L)2(1−R(L)) · pnorm(L)

+
∑

L∈SF

len(L)2(1− (Rprop(L) + ε(L))) · pnorm(L)

=
∑
L∈S

len(L)2(1− u

len(L)
) · pnorm(L)

−
∑

L∈SF

len(L)2ε(L) · pnorm(L)

=
(
E[N2

F ]− u · E[NF ]
)

−
∑

L∈SF

len(L)2 · ε(L) · pnorm(L).

This equation gives us insight into how variance reduction
is impacted by choice of u. We recognize E[N2

F ]− u ·E[NF ]
from equation 7 and the insight that this term is var(µ)
when u = E[NF ]. Unlike before though, the term summing
weighted values of ε(L) reduces the amount of variance re-
duction. However if with u near E[NF ] the nature of the
network makes |SF | very small relative to 1/pnorm(L) =∏len(L)−1

i=0 (N − i), then this summation will be very small
showing that we can expect excellent variance reduction.
Note further that as u increases the size of SF decreases.
For if SF,i is defined by u = ui for i = 1, 2 and u1 > u2,
then SF,1 ⊆ SF,2. This says that if for u near E[NF ] the
number of terms in the sum is too large, the sum of epsilon
terms can be made smaller by increasing u, but at the cost
also of increasing the term u · E[NF ], which also reduces
variance reduction.

7. EXPERIMENTS
We use a simple example to illustrate the potential for

using importance sampling to reduce the number of samples
required to achieve high statistical accuracy. We consider a
ring architecture, as illustrated in Figure 2, not only because
of its simplicity but also because networks in the ICS domain
of interest are in fact often rings. In this example all but
two switches have just two ports; two switches have three
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Figure 2: Ring architecture, with two hosts

ports, with an attached host. A flow is established between
the hosts; rules are synthesized so that the backup link is
the “other” inter-switch link at that switch.

The statistical accuracy asked of a Monte Carlo simula-
tion is frequently given as “relative error”, the ratio of the
width of the confidence interval to the mean. So a relative
error of 10% means that the confidence interval is one tenth
the size in magnitude of the mean it surrounds. As we have
seen earlier, to shrink the confidence interval by a factor of
two normally requires a factor of four increase in the number
of replications. This means that ordinary Monte Carlo sim-
ulation will tend to require significantly more replications to
achieve a relative error of, say, 1% than a relative error of
10%.

Figure 3 gives the results of experiments we’ve done with
Flow Validator on the ring topology with four switches.
To understand the meaning of this data, think of each es-
timation task as a sample of the number of replications re-
quired to achieve a given statistical accuracy (in this graph,
1%, 5%, and 10%). Each such estimation task will have a
variable number of replications; we plot the mean and stan-
dard deviation of 10 estimation tasks. We observe that there
is very little difference between standard Monte Carlo and
importance sampling for the relative error of 10%, but sig-
nificant differences for more stringent accuracies. Note that
the y-axis is logarithmic, and at a relative error of 1% im-
portance sampling uses over an order of magnitude fewer
replications to achieve that accuracy.

8. CONCLUSION
The application of software defined networking in an in-

dustrial control system context motivates the development
of configurations that can tolerate link failures and mini-
mize interaction with the controller. Assessment of these
fail-over paths, along with many other properties is the ob-
jective of a tool under development called Flow Validator
. This paper considers how we might use Flow Validator
to assess overall resilience of an SDN to link failures, in the
sense of estimating the mean number of links that may ran-
domly fail before any flow that formerly was routed can no
longer be routed (necessitating involvement of the controller
to attempt to repair the network.) The characteristics of
Flow Validator make it possible for us to approach the

Figure 3: Replications required for given statistical accuracy

problem via Monte Carlo sampling, and exploit deep knowl-
edge about the network state to identify all as-yet un-failed
links such that the immediate failure of any one of them
will cause some loss of service. We show how to exploit
this knowledge to design an importance sampling scheme
for the Monte Carlo estimation of the mean of interest. We
show in this paper conditions under which we can expect
significantly less less variance in the sample statistic, with
the potential for significant reduction in the computational
effort needed to estimate resiliency with good accuracy. Pre-
liminary experiments confirm this expectation.
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