
1

PulseSS: A Pulse-Coupled Synchronization
and Scheduling Protocol

for Clustered Wireless Sensor Networks
Reinhard Gentz, Anna Scaglione, Lorenzo Ferrari, and Y.-W. Peter Hong

Abstract—The Pulse-coupled Synchronization and Scheduling
(PulseSS) protocol is proposed in this work for simultaneous
synchronization and scheduling of communication activities in
clustered wireless sensor networks (WSNs), by emulating the
emergent behavior of pulse-coupled oscillator (PCO) networks
in mathematical biology. Different from existing works that
address synchronization and scheduling (i.e., desynchronization)
separately, PulseSS provides a coordination signaling mechanism
that achieves decentralized network synchronization and time
division multiple access scheduling simultaneously at different
time scales for clustered WSNs. Here, we assume that the nodes
are connected only locally via their respective cluster heads.
Moreover, PulseSS addresses the issue of propagation delays, that
may plague the accuracy of PCO synchronization in practice, by
providing ways to estimate and precompensate for these values
locally at the sensors (i.e., PCOs). At the same time the protocol
retains the adaptivity and light-weight nature of PCO protocols
both in terms of signaling and computations. Simulations of
both the physical and the medium access control layers show a
synchronization accuracy of factions of microseconds above 15dB
of SINR for a 5 cluster network. A hardware implementation of
PulseSS using TinyOS is also provided to corroborate the real
world applicability of our protocol.

Keywords-Pulse-coupled oscillators, network synchronization,
distributed time scheduling, clustered networks, medium access
control, wireless sensor networks.

I. INTRODUCTION

Communication in wireless sensor networks (WSNs) fre-
quently rely on WiFi and Zigbee, which are inherently
asynchronous and resolve medium access conflicts either
through centralized management or through decentralized Car-
rier Sensing Multiple Access (CSMA) methods. The need for
network synchronization, on the other hand, is typically ad-
dressed through out-of-band control channels, like the Global
Positioning System (GPS), or through an application layer
protocol such as the the Precision Time Protocol (PTP). While
GPS and PTP can provide time information for synchronous
sensing, they do not solve the communication scheduling
problem which can be difficult, especially in large mesh
networks of sensors. In fact, the optimal scheduling problem

R. Gentz, A. Scaglione, and L. Ferrari ({rgentz, anna.scaglione, lfer-
rari}@asu.edu) are with the Department of Electrical Computer and En-
ergy Engineering at Arizona State University, Tempe, USA. Y.-W. P. Hong
(ywhong@ee.nthu.edu.tw) is with the Institute of Communications Engineer-
ing, National Tsing Hua University, Hsinchu, Taiwan. Preliminary results of
this work were presented at the IEEE Internet of Things World Forum 2015
[1]. This material is based upon work supported in part by the Department
of Energy DE-OE0000780 and NSF CCF-1011811 (2010-2013).

is known to be NP-hard [2] and thus, several heuristic so-
lutions have been proposed to allocate portions of the time
frame to network nodes, while meeting a given criterion of
fairness [3] or maximizing data throughput. Protocols such
as the USAP [4], DTSAP [5] or FLUSH [6] use a message-
passing approach, while DRAND [7] and the method in [8]
formulate the time scheduling problem as an instance of the
graph-coloring problem. These scheduling algorithms typically
rely on the availability of global synchronization and control
information, such as the packet destinations and data-rates, to
determine the conflict free schedule. However, in a large mesh
network, sharing and computing this information may require
significant overhead and complexity that increases rapidly with
the network size.

For decades, engineers have tried to draw inspiration from
the field of mathematical biology, to emulate the simple
rules that lead to organized behavior in natural swarms and
invent lightweight and easy to deploy protocols that meet the
desired coordination goals. Our focus is a mechanism that
builds on the pulse coupled oscillator (PCO) models from
mathematical biology [9], and supplies two important prim-
itives for clustered ad-hoc networks: decentralized synchro-
nization and medium access control. The proposed protocol
is thus referred to as the Pulse-coupled Synchronization and
Scheduling (PulseSS) protocol. PulseSS works in an ad-hoc
mesh network scenario, where nodes are grouped into clusters
(with nodes communicating with a designated cluster head
(CH)) and contend for the same spectrum resources adaptively.
The architecture is similar to the IEEE 802.11 standard: 1)
transmissions are only allowed from and to the CH and 2)
CH’s acknowledge the reception of signals from nodes in their
range to expose hidden terminals.

A commonly used centralized protocol to similarly attain
synchronization and scheduling with widespread acceptance
for WSNs is WirelessHART [10]. Scheduling in Wire-
lessHART is centrally managed by a single network manager,
limiting the size of the application and introducing a single
point of failure. In contrast, in our proposed protocol each
cluster is managed locally, thus our solution is naturally
scalable. Moreover, WirelessHART requires global knowledge
of the network topology, whereas in our proposed protocol
the nodes of each cluster will assign themselves a fair share
by communicating locally within their cluster. The protocol
ISA100.11a [11], is very similar to WirelessHART and has
its key differences in the network layer and above. There-
fore ISA100.11a suffers from the same problems as Wire-

Author copy. Accepted for publication. Do not redistribute.



2

duration

Beacon 
Emission

Coarse 
Clock

Fine 
Clock

Start 
Timer

End 
Timer

Beacon 
Emision

Coarse 
Clock

Fine 
Clock

CH

CH

Fig. 1. A network with two clusters, with one node in range of both cluster
heads and a pictorial representation of the coarse and fine clocks maintained
by the nodes.

lessHART: central management and need for global knowledge
of the network topology.

Related work on PCO-based scheduling algorithms include
the DESYNC protocol in [12], our previous work on propor-
tional fair scheduling [13], and follow-up works in [14], [15]
that relax the all-to-all connectivity assumption required by the
former two. PCO synchronization for networking applications
was investigated by many, see e.g. [16]–[19]. Further work
has shown that PCO synchronization does not work well
if it is merged with CSMA/CSCA protocols [20]. Efficient
implementations of the PCO protocol should disable CSMA
[17] or use a separate dedicated radio band [21].

The key difference of this work is that PulseSS interlaces
the PCO signaling with the scheduling signals, allowing to
naturally separate the control traffic from the data traffic
transmitted on the same physical channel. Compared to [12]
and [13], the scheduling protocol we propose resolves conflicts
among neighboring cells, i.e. it does not require an all-to-
all connectivity. In fact, the PulseSS protocol can be viewed
as the integration and realization of the theory of PCO syn-
chronization and desynchronization previously studied in e.g.
[12]–[19]. The benefits that we will showcase are: 1) collision
avoidance; 2) integrated signaling; 3) improved synchroniza-
tion accuracy. Some of our preliminary results on the PulseSS
TinyOS experiment in the numerical section can be found in
[1] and the related in depth convergence analysis is in [22].

The remainder of this paper is organized as follows. In
Section II we give an overview of the protocol signaling and
updates and the system model. In Sections III and IV, we
describe the proposed PCO synchronization and scheduling
protocols, respectively. In Section V we show the results of
the protocol numerical simulations and in Section V-B we
report the performance of the protocol in wireless network
experiments that corroborate our hypotheses and findings.

II. OVERVIEW OF THE PULSESS PROTOCOL

Let the WSN be described by the graph G = (V, E), where
V is the set of stationary sensor nodes and E (i.e., the set of
edges) captures the pairs of nodes that are in range of each
other. The network consists of a set of cluster heads (CHs)

denoted by the set C ⊂ V and a set of regular nodesN , V−C
that communicates only with the CHs. For each c ∈ C, we
define Nc ⊂ N as the set of regular (non-CH) nodes that lie
within the transmission range of CH c; and, for each v ∈ N ,
we define Cv , {c ∈ C : v ∈ Nc} as the set of CHs that are
within the transmission range of v.

In this paper we assume that CHs are preassigned, such
that each node has at least one CH in communication range.
Nodes that have multiple CHs in communication range are
referred to as shared (or gateway) nodes. The management of
these nodes is crucial to ensure that all neighboring clusters
can self-organize and attain conflict free schedules.

In PulseSS, each node maintains two local clocks, namely
a fine clock with period T and a coarse clock with period
LT , as illustrated in Fig. 1. Each cycle of the coarse clock is
advanced by the expiration of L cycles of the fine clock and
each cycle of the fine clock represents a transmission time slot
of duration T . The PulseSS signaling is used to locally update
the phases of both clocks, as will be explained mathematically
next. These updates synchronize the phases of the fine clocks
at all nodes at the slot level (see Section III) and set the phases
of the coarse clocks apart so as to schedule for each node a
portion of the L time slots available in the frame, enabling
proportional fairness and spatial reuse (see Section IV). These
goals are achieved by having each node transmit two control
signals, a preamble which we call the start beacon and a post-
amble, called end beacon, meant to reach neighboring CHs.
As in the 802.15.4 MAC these two signals delimit the period
allotted for the two way data transmission between a node and
is CH. However the beacons emissions are controlled by the
regular nodes and not the CHs and there is no contention in this
interval. The times of emission of these beacons governed by
the local coarse clock expirations (every frame); the reception
of such beacons by other nodes triggers adjustments of their
own coarse clocks (and, thus, their schedules) as the CHs’
corresponding acknowledgment is received. The notion of
being coupled through an acknowledgment is new in PCO
based protocols, and it is the key ingredient to attain collision
avoidance.

Mathematically, let the state of the local fine clock at node
v ∈ V be described by the phase variable

Φv(t) =
t

T
+ φv (mod 1), (1)

where t is the absolute time and φv ∈ [0, 1) is the offset
of the clock relative to the absolute time origin. The phase
variable increases from 0 to 1 linearly in each period and
marks the portion of time that has elapsed within each time
slot. Moreover, to determine its transmission schedule, node
v maintains not one but two ascending timers for the coarse
clock, i.e., a start timer and an end timer, as depicted in Fig.
1. The state of the start and the end timers can be described
by the phase variables

Ψ(s)
v (t) ,

t

T
+ φv + ψ(s)

v (mod L)

= sv(t) + Φv(t) (2)



3

Ψ(e)
v (t) ,

t

T
+ φv + ψ(e)

v (mod L)

= ev(t) + Φv(t), (3)

where ψ
(s)
v and ψ

(e)
v are integer offsets of the timers and

sv(t) , bΨ(s)
v (t)c and ev(t) , bΨ(e)

v (t)c are the indices of
the start and end time slots. The timers expire when their
respective phase variables reach the value L and are reset to
0 afterwards. As mentioned before, the expiration of the start
and end timers marks the first and last time slots that node v
is scheduled to transmit (for a duration of [Ψ

(s)
v (t)−Ψ

(e)
v (t)

(mod L)] = [sv(t) − ev(t) (mod L)]) and the transmission
begins with the start beacon and ends with the end beacon.
The two control signals inform the CH that a node v in range
is transmitting for that time. The corresponding acknowledg-
ments by the CHs, called start and end acknowledgments, warn
other nodes in range that the channel towards the CH is busy.
By having each node u, that hears the acknowledgements,
update the discrete portions of its own start and end timers to
avoid overlap (i.e., su(t) and eu(t)), nodes avoid conflicts (c.f.
Section IV). At the same time, synchronization is achieved by
using the estimated emission times of these beacons modulo
T to update the fine-clock phase Φv(t) (c.f. Section III).

Note that, even though each node update is based only on
the acknowledgment of its CHs’ in range, the synchroniza-
tion information will eventually propagate through the whole
network via the updates and firings of shared nodes. It is
important to remark that a node v updates its start and end
timers based on the acknowledgements that occur right before
and right after its start and end beacons, respectively. These
acknowledgements may belong to different CHs. In fact, as
time elapses, these acknowledgements will most likely come
from CHs of the densest clusters. This will be made clearer
in later sections.

PulseSS exhibits the following three main features:
• Synchronization – The network is synchronized at the

slot level, i.e., Φu(t) = Φv(t), for all u, v ∈ V .
• Collision Avoidance: The transmission schedules of all

nodes within the neighborhood of the same CH are
disjoint, i.e., for any c ∈ C and u, v ∈ Nc,

Ψ(s)
v (t)−Ψ(e)

v (t) ≤ Ψ(s)
v (t)−Ψ(s)

u (t),

where the above operations are modulo L.
• Proportional Fair Scheduling: Transmission schedules

of nodes that are in the same cluster, with no other
conflicts and that are transmitting in succession of each
other, are proportional to their demands.

Moreover, in each time slot, we divide the duration T into
uplink and downlink transmission periods with durations Tu =
λT and Td = (1 − λ)T , respectively, where λ ∈ (0, 1). This
approach not only enables two-way communication between
each node and its CH, but also avoids conflict between the
uplink and downlink transmissions of two exposed nodes, i.e.,
two nodes that are in range of each other but are transmitting
and receiving simultaneously with different CH partners. Note
that in the setup we assume that there is no direct CH to CH
communications. However, they could occur if CHs were to
operate also as normal nodes for a neighboring cluster.

III. PULSESS SYNCHRONIZATION UPDATES

Next we describe the clock update procedures required to
achieve synchronization among all fine clocks in the network.
It is interesting to point out that the synchronization relies only
on the beacons and acknowledgments utilized for scheduling
and, thus, comes at no additional signaling overhead.

A. Effect of Delay on Conventional PCO Synchronization

The basic idea of PCO synchronization is to have each node
emit a pulse (or beacon) whenever its local phase variable, say
Φv(t), reaches 1 and have each node update its local phase
variable whenever it receives a beacon from another node.
In the early studies of PCO synchronization, the proof of
synchrony among the local phase variables of all nodes often
relied on three ideal assumptions: (i) all-to-all connectivity,
i.e., all nodes are in range of each other; (ii) periodic pulsing,
i.e., a pulse (or beacon) is emitted each time the phase
of the local fine clock reaches 1; and (iii) instantaneous
communication, i.e., a pulse (or beacon) transmitted by one
node arrives at all other nodes instantaneously.

Let t+ , limε→0 t + ε indicate the time immediately
following time t. Specifically, suppose that a beacon was
emitted by node u at time t, and that every other node v 6= u
who has overheard the beacon and is not firing at the same
time, updates its local phase variable so that the value at time
t+ becomes

Φv(t
+) = min{(1 + α)Φv(t), 1}, (4)

where α ∈ (0, 1). By doing so, the local phase variable is
advanced by an amount proportional to its current value. Under
the ideal assumptions mentioned above, it has been shown in
[23] that the PCOs will eventually converge to synchrony with
probability 1. That is, for almost all initial conditions, there
exists t0 such that Φv(t) = Φu(t), for all nodes u, v and for
all t > t0. For locally connected networks, PCO convergence
has only been proven by considering asymptotically small
coupling (i.e. small α) (see e.g. [18], [19]). An extension
of the presented protocol could include a different choice for
the dynamics of PCO update in (4) to speed up the protocol
convergence, as done e.g. in [24].

Note also that to allow for propagation delays, several works
(e.g ) introduced the use of the refractory period, i.e. a short
period of time, following the emission of the beacon at each
node, during which its phase variable cannot be updated1.
The refractory period prevents a node from being affected by
other nodes whose pulses were emitted simultaneously (i.e.,
synchronized) but arrive later due to propagation delay. For
typical PCO-type protocols , the duration ∆ref of the refractory
period must be chosen to be larger than twice the propagation
delay (to accommodate for the echoing effect that may occur
when a node’s own firing triggers the firing of another node)
plus the likely range of the arrival time estimation error. In

1This reduction in sensing time in the PCO protocol is also applied in
other works with the idea of energy savings [25], [26]. Our protocol naturally
reduces the sensing time because the node can sense only once a frame and
adjacent (in time) beacons described in Section IV. Because the periodicity
of the beacons of interest is much slower than the PCO period T the receiver
is already mostly off.



4

mathematical terms, let r be the time of reception of a pulsing
event that occurred at time t. Then, the modified update rule
is given by

Φv(r
+) =

{
Φv(r), if Φv(r) ≤ ∆ref

min{(1 + α)Φv(r), 1}, otherwise.
(5)

The size of the refractory period, that is necessary for the
protocol convergence, must be chosen such that ∆ref > 2(r−
t) for all neighborhoods in the network.

B. PulseSS Synchronization with Delay Compensation

In PulseSS, synchronization is achieved by utilizing the
time of reception of the start and end beacons also used for
scheduling, thus re-using the same signaling. The updates of
local fine clocks are always between regular nodes (shared or
not) and CHs that are in their range.

In [27] it was shown that in PCO synchronization the error
accumulates over multiple hops and, thus, can be bigger than
the refractory period ∆ref required to observe convergence.
PulseSS mitigates this effect by having the nodes estimate and
compensate for the propagation delays of acknowledgments in
their updates. This is possible because, in PulseSS, a pulse is
emitted by each node only once every cycle of the coarse
clock (which has duration LT ), instead of once every fine
cycle (which occurs with period T ), as done in conventional
PCO synchronization. This means the firing event of each
node is isolated from other events in the same cluster and the
propagation delay between the firing node and the CH can be
estimated and the update can compensate for that. Therefore
only propagation delay estimation errors (see next subsection)
accumulate, but not the transmission delay itself.

Moreover it was shown in [22] that the PCO synchronization
algorithm converges for any tree network to fixed points such
that the maximum synchronization error can be bounded by
the sum of the timing errors along the hops of the longest
path starting from the (this result was predicted and shown
numerically in [28]). Even though there is no proof of con-
vergence valid for an arbitrary clustered network, numerical
evidence shows that the network always converges as long as
α is sufficiently small.

Specifically, let τ̂v,c be the estimated propagation delay
between node v and CH c. Suppose that node v emits a start
beacon at time t(s)v and is received at CH c at time r(s)v . Upon
receiving the start beacon from node v, CH c first computes an
estimate of the emission time of the beacon as t̂(s)c,v , r

(s)
v −τ̂c,v

and then updates its local phase variable so that the phase at
time t̂(s)+c,v (i.e., the time right after t̂(s)c,v) is

Φc(t̂
(s)+
c,v ) =

{
Φc(t̂

(s)
c,v), Φc(t̂

(s)
c,v) ≤ ∆ref ,

min{(1+α)Φc(t̂
(s)
c,v), 1}, else.

(6)
Afterwards, CH c sends an acknowledgment in the downlink
(DL) transmission period of the next time slot, i.e., at time
t̂
(s)
c + λT , where t

(s)
c , min{t > r

(s)+
v : Φc(t) = 1} is

the beginning of the next time slot according to CH c’s local
clock. This acknowledgment is received by all nodes in its
range. Suppose that the acknowledgment is received at node

UL DL UL DL

End 
Beacon

End 
Beacon

DL-ACK

DL-ACK

UL-ACK

UL-ACK

Fig. 2. Illustration of the signaling in the end time slot according to node
v’s time-scale used for delay estimation and scheduling.

u ∈ Nc at time r(s)c . Node u computes an estimate of t(s)c as
t̂
(s)
c,u = r

(s)
c − λT − τ̂u,c and updates its local phase variable

so that the phase at time t̂(s)+c,u is given by

Φu(t̂(s)+c,u ) =

{
Φu(t̂

(s)
c,u), Φu(t̂

(s)
c,u) ≤ ∆ref ,

min{(1+α)Φu(t̂
(s)
c,u), 1}, else.

(7)
By observing the reception time of the acknowledgments, node
u can also obtain an estimate of the emission time of node v’s
start beacon as t̂(s)v,u = t̂

(s)
c,u − T , which is used to determine

the scheduling as described in Section IV.

C. Estimation of Propagation Delays

In the previous subsection we showed how the phase
compensation in the synchronization updates (such as (7))
(which occur when nodes send their start beacons and the
CH acknowledge them) can be performed with estimates of
the propagation delays. In this subsection we describe how
the estimation of the propagation delay τ̂v,c can be performed
based on a specific hand-shaking protocol for the emission and
acknowledgments of the end beacons. In particular we adopt
a back-and-forth signaling between node v and CH c similar
to that in PTP [29]. This is illustrated in Fig. 2. The impact
on the network synchronization accuracy attainable with this
technique is discussed further in Section V-A.

Let t(e)v be the time that the end timer of node v expires
and that an end beacon is emitted. Then the arrival time of
the end beacon at CH c can be written as

r(e)v , t(e)v + τv,c + z(e)v , (8)

where τv,c is the propagation delay between node v and CH
c and z(e)v is the estimation error of the arrival time.

The estimate is carried out in the presence of noise and
interference. In our simulations we model the estimation error
z
(e)
v as a Gaussian zero mean random variable with variance

matching the so called Ziv-Zakai lower bound for the time of
arrival error variance [30].

Upon receiving the end beacon, CH c waits for time λT

and then emits, at time t(e)DL , r
(e)
v + λT , an acknowledgment



5

on the downlink that arrives at node v at time r(e)DL , t
(e)
DL +

τv,c + z
(e)
DL, where z(e)DL is the estimation error of the arrival

time of the first acknowledgment at node v. Similarly, after
time (1 − λ)T (i.e., at time t

(e)
UL , r

(e)
DL + (1 − λ)T ), node

v emits a second acknowledgment on the uplink (UL) that
arrives at CH c at time r(e)UL , t

(e)
UL + τv,c + z

(e)
UL, where z(e)UL

is the arrival time estimation error made when processing the
second acknowledgment at CH c2.

Since t(e)v and r
(e)
DL are known at node v, the propagation

delay can be estimated at node v as

τ̂ (v)v,c =
1

2
(r

(e)
DL − t

(e)
v − λT ) = τv,c +

1

2
(z(e)v + z

(e)
DL). (9)

Similarly, since t
(e)
DL and r

(e)
UL are known at CH c, the

propagation delay can be estimated at CH c as

τ̂ (c)v,c =
1

2
[r

(e)
UL−t

(e)
DL−(1−λ)T ] = τv,c+

1

2
(z

(e)
DL+z

(e)
UL). (10)

For a static network, the delay estimation can be further refined
by averaging over the estimates obtained in the recent M
coarse cycles.

Note that, to ensure that the uplink and downlink transmis-
sions are in their respective time periods, the durations of the
end beacon, the DL acknowledgment, and the UL acknowl-
edgment should be less than λT − τv,c, and (1−λ)T − 2τv,c,
λT − 3τv,c, respectively.

IV. PULSESS SCHEDULING UPDATES

Different from the synchronization updates, the schedul-
ing of PulseSS for collision avoidance and proportional fair
scheduling is achieved through the update of the discrete
portions of the nodes’ start and end timers (i.e., sv(t) and
ev(t)) in each cycle of the coarse clock. The updates and
messaging mechanisms can be viewed as the realization of
the theory of PCO desynchronization studied in [13] and are
described as follows.

Specifically, suppose that the initial state of the start and end
timers already satisfy the collision avoidance criterion, that is,
for any c ∈ C and u, v ∈ Nc,

Ψ(s)
v (t)−Ψ(e)

v (t) ≤ Ψ(s)
v (t)−Ψ(s)

u (t) (mod L). (11)

This can be achieved by letting the initial difference of the
start and end timers at each node be sufficiently small. The
expiration of the start and end timers marks the start and
end of a node’s transmission period in each cycle. Once the
start (or the end) timer of a node, say node v, expires, a
start (or an end) beacon is emitted by it in the UL period
of the time slot. The beacon emitted by node v will then be
acknowledged by all CHs in range, to inform all other nodes in
the neighborhood of the CHs of the beacon emission. In case
the collision avoidance criterion is violated, admission control
at CHs would not acknowledge, i.e., may deny a second start
beacon, before an end beacon is received, so that only one

2Note that, in the case of a beacon sent by a shared node there are multiple
CH that can respond. Our assumption is that the arrival time can be resolved
as it is typical in multi-path channels, by estimating the strongest path arrival
time which should correspond to the closest CH (if that is not the correct CH,
a residual error will remain).

node at a time has channel access. We assume that all CHs in
range acknowledge at unison with an identical beacon signal,
such that acknowledgments are processed at the receiving node
as a single signal affected by multi-path (we view this as a
cooperative-channel acknowledgement).

Let pre(v) ∈ ∪c∈CvNc and suc(v) ∈ ∪c∈CvNc be the
nodes that transmit immediately before and after node v, i.e.,
the predecessor and successor of node v. Node v adjusts its
local timers in each cycle based on the expiration times of the
end and start timers of nodes pre(v) and suc(v) respectively.

Let t(s)v ∈ {t : Ψ
(s)
v (t) = L} be the expiration time instant

of the start timer of node v in a given cycle of the coarse
clock and let t(e)v = min{t > t

(s)
v : Ψ

(e)
v (t) = L} be that

of the end timer of node v that follows immediately after.
Moreover, let t(e)pre(v) = max{t < t

(s)
v : Ψ

(e)
pre(v)(t) = L} be the

most recent expiration time instant of the predecessor’s end
timer and let t(s)suc(v) =min{t>t(e)v :Ψ

(s)
suc(v)(t)=L} be that of

the successor’s start timer. The corresponding time estimates3

at node v are denoted by t̂(e)pre(v),v and t̂(s)suc(v),v .
Immediately after receiving the acknowledgment to the start

timer of suc(v), node v, at time t(s)+suc(v), updates its local timers
in an attempt to move the discrete portion of the clocks phases
(i.e., the time slot index) towards the target values

sv,target =
Dv+δ

Dv+2δ
epre(v)(t

(s)+
suc(v))+

δ

Dv+2δ
ssuc(v)(t

(s)+
suc(v))

ev,target =
δ

Dv+2δ
epre(v)(t

(s)+
suc(v))+

Dv+δ

Dv+2δ
ssuc(v)(t

(s)+
suc(v))

where Dv is a parameter capturing the demand of node v, δ is
the portion of time slots reserved as guard period in between
transmissions. If the target values are achieved, a portion of
Dv/(Dv + 2δ) of the time between the transmissions of its
predecessor and successor is left for node v’s transmission of
its payload data and δ/(Dv + 2δ) portion of the time is left
before and after its own transmission as guard intervals.

When t
(s)
suc(v) and t

(e)
pre(v) are perfectly known and that no

updates have been made to predecessor’s phase before time
t
(s)
suc(v),v , node v can infer that ssuc(v)(t

(s)+
suc(v)) = 0, since

the timer must have reset to 0 after it has expired and that
epre(v)(t

(s)+
suc(v)) = (t

(s)+
suc(v) − t

(e)
pre(v))/T , which is the time

that has elapsed after the expiration of the end timer of
node pre(v). However, in reality, these target values cannot
be obtained precisely since only the estimates t̂(s)suc(v),v and

t̂
(e)
pre(v),v are known at node v and also since the phase of

the predecessor may in fact have been updated before time
t̂
(s)
suc(v),v due to the beacon emission of node v. In this case,

node v can only obtain the estimated target values

ŝv,target =
Dv+δ

Dv+2δ

t̂
(s)+
suc(v),v − t̂

(e)
pre(v),v

T
(12)

êv,target =
δ

Dv+2δ

t̂
(s)+
suc(v),v − t̂

(e)
pre(v),v

T
. (13)

3Note that the time instants t(e)
pre(v)

and t(s)
suc(v)

can be estimated by node v
through the reception time of CH’s acknowledgments to these beacon signals,
but the accuracy may be affected by synchronization errors and propagation
delays, as described in the previous section.



6

Since the target values are not precise4, it is necessary to
further limit the adjustment of the timers at node v so that the
relative order of its timers and the timers of its predecessor
and successor are not altered, causing overlap in the schedules.
This is achieved by further modifying their target values as

s̃v,target =min

ŝv,target, sv(t̂
(s)+
suc(v),v)+

t̂
(s)+

suc(v),v
−t̂(e)

pre(v),v

T

2


ẽv,target =max

ev,target, ev(t̂
(s)+
suc(v),v)

2

 .

Finally, the local timers at node v are updated as

sv(t̂
(s)+
suc(v),v)=Q

[
(1−β)sv(t̂

(s)
v,suc(v))+βs̃v,target

]
(14)

ev(t̂
(s)+
suc(v),v)=Q

[
(1−β)ev(t̂

(s)
suc(v),v)+βẽv,target

]
(15)

where β ∈ (0, 1) and Q(·) is a dithered quantization function
[31] that maps the phase to the integer set {0, 1, . . . , L} de-
fined as Q(x) = round(x+ v), where v ∼ U(−1/2, 1/2). As
shown in [32], the dithering operation ensures the convergence
of the quantized consensus policy and has similar effects
on PulseSS. In fact, as time elapses and synchronization is
achieved, the dithered quantized desynchronization protocol
mentioned above has been shown to converge for all-to-all
networks in [33]. Its properties in a locally connected networks
are discussed in the next subsection. To illustrate the idea an
example on scheduling evolution is shown in Fig. 3.

A. Convergence properties of PulseSS

While the protocol always achieves a TDM schedule, the
final solution may vary depending on the initial conditions.
In some cases, certain portions of a frame corresponding to a
particular cluster may be left empty in order to avoid conflict
with neighboring clusters (an example in shown in Section
V-B). We refer to these spaces left empty as white spaces.
White spaces can be avoided under special conditions on
the network topology and on the order of the initial clock
phases, as specified in [22]. Note that, if the conditions on
the topology are met, the network schedule has a unique
fixed point but in general a different ordering will cause
the schedule to loose efficiency. It is difficult to realize and
enforce these conditions in general, nonetheless the conflict-
free schedule provided by PulseSS generally supports higher
network throughput compared to random access.

To explain the conditions for the existence of a unique
efficient fixed point we define for each node i a unique cluster
c (we will break ties if they exist by choosing an arbitrary one)
with maximum demand as:

C(i) = arg max
c′∈Ci

∑
v∈Nc′

(Dv + δ). (16)

Then, we define for each cluster c the sets of nodes:

Ac = {i |C(i) = c} (17)

4The time values used are based on possibly outdated information about
the predecessor node’s state at the time it last fired.

Fig. 3. Scheduling evolution illustration for a two cluster network with 4 local
nodes{1,2,3,5} (2 in each cluster) and one shared node{4} as illustrated in
Fig. 4. For this illustration, we overlay the scheduling of all nodes, assuming
the nodes are synchronized and have equal demands. The shared node{4}
is in both clusters, in green color, while the 4 local nodes{1,2,3,5}, 2 in
each cluster, are each in their own color. Fig. A) shows the initial state of the
system. We can see that each node has only has the minimal size, in fact a slot
for start and end beacon each. When time progresses and a start or end counter
expires the node will send the corresponding beacon. Specifically, the start
timer on the red node{1} is expired is Fig. B) and it sends out a beacon, that is
acknowledged by the CH1. The green node{4}, notices this acknowledgment
as the first start beacon following its own end beacon; Therefore finding that
the red node{1} is its successor. Furthermore the green node{4} knows from
previous firings that the blue node{2} is its predecessor. Then using (12)-(15)
the green node{4} will calculate the target values for start and end timers and
moves its start and end timers towards the target value, with a factor of β,
claiming these transmission slots exclusively. Other nodes will not update their
scheduling at this time as the red node{1} is not their respective successor.
Then, as time continues, nodes will fire and update their timings based on
the status of their respective successor and predecessor. In Fig. C) the nodes
have reached a steady state, all have their proportional fair share, and most
importantly the transmission of the shared node is respected in both clusters,
so there is no channel access conflict.

Fig. 4. Network topology of illustration in Fig. 3. The same topology is used
for the simulation in Fig. 6, for which distances and drywall placements are
marked.

Sc = Nc/Ac ∀ c ∈ C. (18)

Since, by definition, for each node i its C(i) is unique, the
sets Ac form a partition of all the nodes in the network.

As specified in [22], a unique fixed point exists for PulseSS
for any given ordering of the initial clock phases if the
following condition holds:

1) For any c and i, j ∈ Sc, it holds that C(i) = C(j);
Furthermore, if such conditions are met then there exists an
ordering that allows to have an efficient (i.e. white spaces free)



7

Algorithm 1: Computation of the unique efficient fixed-
point
% For a network with unique fixed point derives the
% unique schedule
find c such that Sc = ∅
assign this schedule to all nodes v in Ac:
T c = LT , sv(t)− ev(t) in (19), δc in (20)
C̃ = c;
% C̃ = {c : nodes in Ac have an assigned schedule}
while C̃ 6= C do

• pick a random c ∈ C \ C̃
• [i1, . . . , i|Sc|] = Sc
• c′ = A−1(i1)

if c′ ∈ C̃ then
assign this schedule to all nodes v in Ac:
T c in (21), sv(t)− ev(t) in (22), δc in (23)
C̃ = C̃ + c;

schedule and Algorithm 1 calculates such efficient schedule.
Other inefficient fix points can be calculated on a case by case
basis. Interestingly there can be regions of convergence for the
algorithm (i.e. non isolated fixed points) an example is offered
in Section V-B) Further note that the condition above implies
that it is possible to order the clusters in a tree structure where
the root is the unique cluster c for which Sc = ∅.

Let us now explain Algorithm 1. We assume that the
conditions IV-A) and 1) are satisfied and denote by T c ≤ LT
the portion of the frame available for the nodes in Ac. For the
unique cluster c, for which Sc = ∅ we have T c = LT and the
portion of the frame available for all nodes v ∈ Ac is:

sv(t)− ev(t) =
Dv

|Ac|δ +
∑
i∈Ac

Di
T c. (19)

Furthermore each node in this unique cluster c has a guard
space before and after its transmission time equal to

δc =
δ

|Ac|δ +
∑
i∈Ac

Di
T c. (20)

For all other clusters c′, for which Sc′ 6= ∅, we will have:

T c
′

=

LT − (|Sc′ | − 1)δc′ −
∑
v∈Sc′

(sv(t)− ev(t))

 (21)

and every node v ∈ Ac′ will have

sv(t)− ev(t) =
Dv

(1 + |Ac′ |)δ +
∑
i∈Ac′

Di
T c

′
. (22)

with a guard space before and after the transmission time:

δc′ =
δ

(1 + |Ac′ |)δ +
∑
i∈Ac′

Di
T c

′
. (23)

Algorithm 1 is a method to exhaustively calculate the schedule
for all nodes by ensuring that δc′ and

∑
v∈Sc′

(sv(t)− ev(t))
in (21) can be determined sequentially starting with the cluster
with Sc = ∅.

An example for Di = const. is shown in Fig. 5.

Fig. 5. Example of schedule in a two-cluster network using the topology with
2 shared nodes in purple and 7 and 5 local nodes respectively and all nodes
with equal demand. We can see that cluster 1, has the highest total demand,
since it contains more nodes, determines the size of the shared nodes. The
other node’s size are determined by each cluster individually. We can further
find T1/δ1 = T2/δ2 = D/δ The guard band between local and shared nodes
(in green) is determined only by the local nodes.

Notice that changes in demand are naturally leading to
adaptively change the schedule. A similar effect is attained
when nodes leave the network, because the total demand
decreases and node can then occupy the empty space. All that
remains to clarify is how new nodes join the network, which
is the subject of the next subsection.

B. Node Joining and Admission Control

Suppose that node v wants to to join the network as a
regular node. Before joining, node v first listens for at least
one cycle LT to determine which CHs and nodes are within
its neighborhood. We assume that node v is paired with
specific CHs and if none of them is in range, node v will
not join the network. If the intended CH is in range then
node v checks after which node is the longest unoccupied
space, that is large enough to fit a start and end beacon. in
the next cycle node v listens for the end beacon (or, more
specifically, the acknowledgment of the end beacon) of that
node and emits its own start beacon T + (1 − λ)T later
(i.e., after the acknowledgments of the end beacon have died
out according to Fig. 2). The end beacon is then send 2T
later, resulting in no payload bytes in the first cycle. If the
end beacon is acknowledged by the CH, then node v has
successfully joined the network. On the other hand, node
v will refrain from transmitting its end beacon if the start
beacon is not acknowledged. Similarly, if more than one node
is trying to join the network at the same time, the CH will not
acknowledge the beacon emission due to a collision among
the nodes that try to join, node v can try again at a another
randomly chosen empty spaces.

V. NUMERICAL RESULTS

In this section, we demonstrate the performance of Puls-
eSS in terms of both scheduling efficiency, convergence and
synchronization accuracy.

A. Results on PulseSS Synchronization

In this section we evaluate by simulations the achievable
synchronization accuracy of PulseSS. Here, we consider a
network with 5 nodes and 2 CHs as illustrated in Fig. 4. The
parameters used for this simulations are the given in Table I.



8

TABLE I
SIMULATION PARAMETERS

Parameters Value
Frequency 2.4GHz
Bandwidth 2Mhz
Tx & Rx Antenna height 1m
Temperature 300K
Rx Noise Factor 1
PCO-Period T 1/60s
Beacon length 6.4ms
Slots L 120
(α,D, δ, β, λ,M) (0.04, 15, 7, 0.4, 0.5, 1)
Random Initialization true

SINR of link 4
5 10 15 20 25 30 35

P
ha

se
 m

is
m

at
ch

 [s
]

10-14

10-12

10-10

10-8

10-6

Node 4 head-node
Node 4 not headnode
Ziv-Zakai Bound
Average

Fig. 6. Simulated fine clock accuracy, for node 4 (Fig. 4) being the leading
(head node), or another node being the leading node. Note that link 4’s SINR
is equal to link 4’s SNR as by protocol design it will exclusively transmit in
it’s timeslot.

We assume the receivers time of arrival estimation algorithm is
reaching the accuracy predicted by the Ziv-Zakai Bound [30],
which we evaluate as a function of the signal to interference
and noise ratio (SINR). In fact, in spite of our conflict
resolution technique, the reception will always be subject to
some interference, which in short range communications will
dominate over thermal noise. Thus, it is necessary to pay
close attention to the interference and path loss attenuation.
We calculate the interference power received from any active
node to a certain receiver by scaling the transmit power of the
active nodes as predicted by the indoor path-loss model for
the ISM 2.4 GHz system proposed in [34]; the power level
is also multiplied by a random exponential random variable
with unit mean to model short-term fading. Using the signal to
noise plus interference value of a certain link that is receiving
a beacon signal, we simulate the time of arrival estimates at
each receiver as the free space delay of the link plus zero mean
Gaussian noise with variance equal to the Ziv-Zakai Bound
evaluated at the link SINR level. The conflict graph is the
topology shown in Fig.4. The shared node is placed between
two drywalls, to illustrate that the clusters are typically at two
separate locations providing an additional path loss attenuation
of 5.7dB [34].

In Fig. 6 we plot the average absolute value of the phase
mismatch (PM) of all nodes versus an arbitrary chosen refer-
ence as a function of the SINR of the link between node 4
and CH15, which is the minimum average SINR for the whole
network. When the network converges all nodes in range are

5Both links from node 4 to the CH’s are symetric and therefore identical.

firing within the refractory period and there exist a certain
order of firing. The PM shown in Fig. 6 is averaged among
all nodes, over 1000 iterations, illustrates 3 cases: a) in the
first case node 4 is the first in the final PCO firing order; b) in
the second case one non-shared node is leading the others in
the final firing order; c) in the third case the initial condition
is chosen at random and either situation is possible, although
not necessarily with the same frequency. In fact, it is clear
that starting at random the final PCO firing order of case b) is
quite frequent and the average performance tend to be closer to
the worst ones. Another interesting observation (see also [28])
is that in PulseSS there is an accumulation of timing errors,
adding up over the path length between the node firing first
(the head-node) and the last, which explains the degradation
compared to the Ziv-Zakai limit. What is most pronounced is
the difference in accuracy we observe between the two cases
mentioned earlier. In the first case both CH are absorbed by
node 4, and can take advantage of the fact that PCO updates
occur interference free by design. We can see that the accuracy
in this case is close to the sum of the Ziv-Zakai limits of the
links forming a 4 hop length path.

In the second case, the difference is that node 4 may
update its clock in the presence of interference from one
of the clusters. The results shown are averaged over all 4
possible choices for head-nodes other than node 46, which
are identical due to symmetry. If two nodes from the two
clusters that have node 4 in common transmit data while
another is transmitting a beacon, assumed to have the same
transmission power, then node 4 will experience interference
from the concurrent transmission of data, resulting in the loss
in accuracy in the time of arrival estimation that we observe
in the simulations. Note, however, that a simple modification
of the protocol would allow to attain the same accuracy as in
case a all the time. In fact, instead of updating the PCO phase
at every acknowledgement, nodes could selectively discard
updates if the SINR are below a threshold (although coarse
clock updates that require simply a correct detection would
still have to be done). A more extreme option is that all nodes
update exclusively when their specific acknowledgement are
sent, once every frame. Of course, PCO updates would be far
more infrequent and the convergence speed would be lower.

B. Results on PulseSS Scheduling

In this section we focus on the effectiveness of the PulseSS
scheduling. The network topology we consider is in Fig. 7,
bottom right with an average node to CH distance of 6.2m. To
illustrate that nodes are in different rooms we place drywalls as
in the previous section. The simulations parameters, Rayleigh
fading and path-loss model are the same as in the previous
section. Assume that the detection of a signal is perfect, but
the time of arrival is affected by the same type of error as
in the previous section. We are especially interested in the
influence of noise and inaccuracies of the synchronization
on the scheduling results, and also in the effectiveness and
proportional fairness of PulseSS. In the simulations, all nodes
are assumed to have equal demand.

6CH’s never initialize a transmission and can never be head nodes.



9

Firing-Rounds
10 20 30 40 50 60

S
lo

t

0

20

40

60

80

100

120
A

B

Cluster 1

Firing-Rounds
10 20 30 40 50 60

S
lo

t

0

20

40

60

80

100

120

C

D

E
Cluster 2

Firing-Rounds
10 20 30 40 50 60

S
lo

t

0

20

40

60

80

100

120

B

J

F

Cluster 3

Firing-Rounds
10 20 30 40 50 60

S
lo

t

0

20

40

60

80

100

120

F

G

H

Cluster 4

Firing-Rounds
10 20 30 40 50 60

S
lo

t

0

20

40

60

80

100

120

K

Cluster 5

C

empty space

used space

used space

empty space

...

...

Fig. 7. Simulated TDMA Scheduling Result. The topology simulated and the location of nodes of special interest can be seen in the bottom right.

In Fig. 7, we plot the state of the start and end timers of
different nodes in a cluster with respect to the number of firing
rounds. The values are shifted relative to the firing time of the
start beacon of an arbitrarily chosen node in the cluster. The
state of the start and end timers of the same node are plotted,
in all clusters where the node is present, using the same color.
The line style is solid, if the node updates with that cluster and
dash-dotted if the nodes is not updating the respective timer
with that cluster but is in range of the CH. The theoretical
convergence points in Algorithm 1 are shown as the dashed
lines for comparison. Note that the plot is shown modulo L,
thus the slot L− 1 and 0 are next to each other.

We can see, in Fig. 7, that the nodes have a small gap
initially at their disposal, since they are initialized with the
minimum possible distance between start and end clock and,
as the time advances they acquire a fair amount of the frame.
Notice that the sudden jump in phases of node A in cluster
1, node J in cluster 3, node H in cluster 4, and node K in
cluster 5 are due to the artifact of the modulo L definition
of the phases, i.e., due to the fact that slots L-1 and 0 are
next to each other. We can clearly see that cluster 1 contains
the most nodes and is therefore the densest cluster (root).
As consequence, all nodes in range update with that cluster.
Cluster 2, which is the second densest cluster, has only one
node (node C) that is not shared with cluster 1. It can be
seen that the schedule of cluster 2 is constrained by cluster
1 and the only node that is not in common, node C, reuses
the same slot of node B from cluster 1. Note that there the
presence of white space (marked by the letter E) in cluster 2,
as we mentioned in Section IV-A. Equation (21) in Algorithm
1 is then modified to consider the effective T 2 that node C
has, i.e. an additional δ1 and the schedule of node A are
removed from T 2. The unused space could have been filled
if nodes A and B were next to each other in time, putting all
shared nodes in consecutive spots (mod L) and requiring no

adjustment of Algorithm 1. We can see that all nodes start
and end timers approach their theoretical convergent points
predicted by Algorithm 1 with the modification just described
for cluster 2. The average channel utilization at the end over
all clusters is 62%.

In cluster 5, we see one shared node C with cluster 2, that is,
always updating with cluster 2 and therefore limited by cluster
2, visualized as a dash-dotted line. However, node K in cluster
5 has only one CH in range and, thus, can take advantage of
the available space in that cluster and expand. We can further
see that node K (seen in the outer part of the figure, due to
the modulo L property), leaves a larger separation, potentially
allowing node C to claim that space, since it is unaware of
the limitations in another cluster.

In clusters 3 and 4, we can see the combination of all the
previously mentioned effects. In cluster 3, node B is updating
with cluster 1 and therefore not claiming any space. Node F’s
start beacon is confined by node H in cluster 4, but its end
beacon is confined by node B in cluster 3. This is the best
case scenario for the region of possible spaces between B and
F that give a fixed point as discussed in [22], since condition 1
is violated for cluster c = 3 and the mapping C(i) in (16) that
gives C(B) = 1 and C(F ) = 4. The confinement due to node
H is because in cluster 4 the nodes can share the available
space equally. As a consequence the guard space between
nodes in cluster 4 is smaller than those in cluster 3 where
node B is confined by cluster 1. On the other end, node F’s
end beacon is confined by node B because that node is already
fixed and cannot move. As a consequence all nodes from
cluster 4 reduce their shares such that the limitations inflicted
from node B, in cluster 3 are respected, and proportional fair
scheduling is achieved. Node J behaves similarly to node K in
cluster 5: it claims the available space but does not influence
nodes B or F as they are confined by other clusters.

It is interesting to note that the convergence lines plotted



10

in Fig. 7 help us visualize where the phases of the nodes
start and end beacons will eventually converge as time goes
to infinity. These phases need not stay above or below their
respective convergence lines during the transience period.
What is common to the evolution of all phases is that (i) the
difference between the phases of the start and end beacons
of each node will gradually expand towards occupying its
proportional share of the frame, and (ii) once the expansion
reaches a certain point, the phases of the beacons will start to
shift in the same direction towards their convergence lines due
to the pressure imposed by nodes that are firing just before or
after them. This can be observed for all nodes. For example,
for node K, the phases of its start and end beacons initiate at
values in between their convergence lines (modulo L), but the
difference between these phases rapidly expands (since node
C is occupying only a small portion of the frame), causing
the phase of its end beacon to go below its convergence line
around the 4th firing round. These phases then both shift in
the same direction towards their convergence lines due to
the pressure imposed by node C, which is governed by the
evolution of nodes in cluster 2. Similarly, for node J, the phases
of its start and end beacons both initiate at values below their
respective convergence lines (modulo L), and then shift in the
same direction towards these lines.

VI. MICROCONTROLLER IMPLEMENTATION OF PULSESS

We implemented PulseSS in a micro-controller equipped
with a radio. In our implementation we can only access events
reported by the radio to the micro-controller and this limits
our precision in time to the time interval between clock ticks.
The micro-controller is running with 7.3728MHz, which is
not enough in an indoor environment to account for signal
traveling delays, as the minimum step size is one clock cycle
(=41m free space travel). This has prompted us to ignore the
delay compensation feature for this implementation, which
also eliminates the need for the third beacon acknowledgment.
However with full implementation of the physical layer our
compensation would be feasible. Furthermore, because we
cannot modify and add physical layer signals and detection
schemes, beacons need to be differentiated through a message
in the payload that is decoded.

As we have a real time system we have have to account
for CPU limitations and ensure that all calculations can be
completed before the node or CH has to send the next
command. The time that are needed to send beacons and
acknowledgements, as shown in Fig. 8, including the compu-
tation times, need to fit in the PCO slot duration. To gain some
extra computation time before the deadline arrives we can
take advantage of the following: Because the CPU is notified
when the radio chip receives a preamble, we can preemptively
compute the updates, assuming the acknowelgement is valid.
Once the complete packet is received (we ignore the stopbyte),
either the type of beacon sent or the reception of data is
confirmed, and the updates can be applied or discarded.

Like in TDMA each node can transmit once every LT .
While the minimum size L depends on the maximum num-
ber of nodes in each cluster, we find the minimum period

Channel Start Beacon

preamble
complete

begin
stopbit

DL-ACK

  2      

CPU Node No Operation

preamble
complete

time

t speculative

t stop

CPU CH t speculative

begin
stopbit

t stop

t compute
ch

t compute
node

Payload

No Operation

End Beacon
//

Free

Fig. 8. Channel and computation utilization from Node and CH. The task of
computing updates for the clocks after a successful beacon receivement has
to be complete after time tchcompute , tnode

compute, respectively.

TABLE II
MICROCONTROLLER IMPLEMENTATION PARAMETERS

Parameters Value
Frequency 2.4GHz
Bandwidth 2Mhz
Datarate 250kbit/s
Microcontroler clock 7.3728MHz
PCO-Period T 10ms
Coarse Clock Period LT 1.2s
(α,D, δ, β, λ) (0.125, 15, 7, 0.7, 0.5)

T is bounded below by the transmission delays and the
devices computation speed. From the specification of our
micro-controller we determined that the delay for a single
transmission for our system is tsingle ≈ 1099.176µs, limiting
the minimum round trip time. Therefore, based on the time
required to transmit, receive and process the back and forth of
beacons and acknowledgement (see Fig. 8) we find

T > max(2tsingle, t
ch
compute − tstop, 0.5(tnodecompute − tstop)

(24)
where tcompute and tchcompute are the nodes and CH’s respective
required computation times and tstop is the transmission time
of the stop-bit. We note that we have to include tsingle in our
calculation and treat it as a known transmission delay the same
way as we do for τ̂ (s)v,c in (6) since we are interested in the
time the beacon transmission was initiated rather than when
it was completed.

In Section IV we stated that PulseSS requires acknowl-
edgments from multiple CH to be sent at unison so that the
receiver will view them as a multi-path channel transmission.
In our implementation we only have access to the MAC
and not the physical layer. As a consequence, the accuracy
achieved is not sufficient for multiple CH’s acknowledgments
to be received in times that are close enough to be considered
as multi-path (are not within the cyclic prefix of the OFDM
transmission). Therefore we extended the PCO period T so
that each CH uses a deterministic lag with respect to their
own clock that prevents the collisions with neighboring CH.

In the first experiment we have 2 clusters with one shared
node and 3 and 2 local nodes respectively, as seen in the top
right of Fig. 9. To control the topology we use tin-foil to create
Faraday-Cages that would result in the desired connectivity.

In Fig. 9, we plot the PM between each node in the network
and CH 1, chosen as the reference. We can see that, apart for
the shared node PM (red line) the PM of the nodes in cluster
C1 and C2 are very close, which means that the nodes tend
to lock their PCO clocks in their respective clusters, while the



11

Time [LT]
0 5 10 15 20 25 30

P
ha

se
 m

is
sm

at
ch

 [T
] v

s 
C

H
1

10-5

10-4

10-3

10-2

10-1

100

Shared Node
Node 1 C1
Node 2 C1
Node 3 C1
Node 1 C2
Node 2 C2
CH2

Fig. 9. Synchronization result and topology.

shared node, in red, is initially oscillating between the two
clusters, causing oscillations. After 16 cycles of the coarse
clock (LT ) the system converges to a common timing, con-
firming that, via shared nodes, the clusters are lead to coalesce
to the same network timing. With the given parameters in
Table II, we computed the average error after convergence in
the experiment to be 80µs, which is significantly larger than
the simulation results. Recall that we do not have access to
the physical layer and therefore cannot estimate beacon arrival
times precisely.

We also noticed that this system is converging a lot faster
than in the simulations, which is reasonable since our α
(Table II) is larger by an order of magnitude, speeding up
convergence. Another reason to chose α larger is the limited
precision of 16-Bit fix point numbers compared to 64-Bit
floating point numbers used in the simulation7. Similarly, we
chose the parameter β for the scheduling updates larger than
in the simulations, to speed up scheduling convergence. From
the simulation we found that β to be between 0.2 and 0.7
yields good results.

The system’s TDMA scheduling result can be seen in Fig.
10, showing the theoretical solution in dashed lines and the
measurement result in solid lines. We can see that the system
is converging to the theoretical solution and oscillates around
it due to the dithering. We can see each node obtaining its
proportional fair schedule in this experiment. Specifically the
shared node in red, is correctly associated with the denser
cluster 1, as we would expect from our association rule.

In our second experiment we tested the same exact imple-
mentation of PulseSS, but on a much larger set of 39 nodes
and 6 CHs. We also have the same set of parameters than
in the previous experiment, except for T set to 50 ms. The
network deployment shown in Fig. 11 was inside a hallway.
The conflict graph was determined by the nodes position and
interference. As before CH’s were preassigned to nodes. We
can see that scheduling aligns and shared nodes are distributed
among the available space as seen exemplary for 2 of the 6
clusters in Fig. 12 and 13. We notice that group A in the top
cluster is at the edge of reception and loses connection after
some time. Our interpretation is that as transmission begins
and the battery powered node begins to consume more power,
the battery voltage drops, resulting in reduced transmission

7The change of phase with a small α would always be rounded to 0.

Time [LT]
5 10 15 20 25

S
ch

ed
ul

in
g

0

20

40

60

80

100

Cluster 1

Time [LT]
5 10 15 20 25

S
ch

ed
ul

in
g

0

20

40

60

80

100

Cluster 2

Fig. 10. TDMA Scheduling result of topology in Fig 9. Note that the shared
node, in red, is similar but not identical in both clusters. This is due to
independent recording of the beacon arrival times in the 2 CH, with respect
to their own clock.

Fig. 11. Deployment Map of 39 Nodes and 6 CHs.

range. The network simply adjusts to occupy the slots that
are available after these nodes fail. We notice 5 shared nodes
(group B) that are present in both clusters. We record the
schedule attained locally on each CH with respect to the CH’s
own PCO clock, thus shared nodes are only similar and not
identical for both clusters and the schedules appear as drifting,
because of frequency drift and rounding errors of the CH’s
clocks. We can further see that the conflicts of the nodes in
cluster 1, which is the densest cluster, ultimately determine the
schedule. This experiment is described in more detail in [1].
We compared the outage rate of ALOHA, CSMA and PulseSS
and found that PulseSS, which with its signaling ensures the
channel is only in use by one node at a time, is the most
successful in avoiding conflicts. In fact, in comparing the
number of failed packet transmissions we find that the failure
rates of ALOHA, CSMA and PulseSS are 39.5%, 23.5% and
8% respectively for the same exact deployment and the same
exact traffic pattern. This is not surprising, since CSMA works
best for bursty traffic, while PulseSS is most suited for the type
of continuous traffic that we generated. In addition, we found
for this experiment that the average data throughput per node
of PulseSS was 14kbit/s with an average protocol overhead of
2.1% resulting in an average channel usage of 69%.

Through this second experiment we were able to confirm
that the protocol works in this large scale networks in the
way we predicted in theory. As far as the synchronization
performance are concerned, in this second experiment we
obtained an average synchronization accuracy of 410µs in
Fig. 14. As expected, the accuracy degrades compared to our
previous experiment, as a consequence of errors adding up
over more hops in this larger network scenario.



12

Time [LT]
2 4 6 8 10 12 14

S
ch

ed
ul

in
g

0

20

40

60

80

100

120 B

B

B

B

B

A

A

Fig. 12. TDMA Scheduling result of cluster 1.

Time [LT]
2 4 6 8 10 12 14

S
ch

ed
ul

in
g

0

20

40

60

80

100

120

B

B

B

B

B

Fig. 13. TDMA Scheduling result of cluster 2.

Fig. 14. Synchronization result of both shown clusters. Mean and standard
deviation are calculated from the point of convergence.

VII. CONCLUSIONS

In this paper, we proposed PulseSS, a protocol that provides
network synchronization and proportionally fair scheduling
in wireless mesh-networks with a clustered structure. The
protocol was loosely inspired by the PCO model from math-
ematical biology. PulseSS’ main appeal is that of providing
scheduling and synchronization functionalities by exploiting
simple physical layer signaling and local network updates. The
complexity of the updates remains unchanged as the size of
the network scales up, offering a competitive alternative for
wireless sensor networks to main-stream protocols, like Wire-

lessHart, especially in applications that are delay sensitive and
need a resilient clock distribution mechanism, e.g. Intelligent
Infrastructures, Internet of Things, Control Area Networks and
Cyber-Physical Systems.

REFERENCES

[1] R. Gentz, A. Scaglione, Y.-W. Hong, and L. Ferrari, “Pulsess: A
microcontroller implementation of pulse-coupled scheduling and syn-
chronization protocol for cluster-basedwireless sensor networks,” 2015,
IEEE World Forum on Internet of Things.

[2] S. Ramanathan, “A unified framework and algorithm for (t/f/c)dma
channel assignment in wireless networks,” in INFOCOM ’97. Sixteenth
Annual Joint Conference of the IEEE Computer and Communications
Societies. Proceedings IEEE, vol. 2, Apr 1997, pp. 900–907 vol.2.

[3] X. L. Huang and B. Bensaou, “On max-min fairness and scheduling in
wireless ad-hoc networks: analytical framework and implementation,”
in Proceedings of the 2nd ACM international symposium on Mobile ad
hoc networking & computing. ACM, 2001, pp. 221–231.

[4] C. D. Young, “Usap: a unifying dynamic distributed multichannel tdma
slot assignment protocol,” in Military Communications Conference,
1996. MILCOM’96, Conference Proceedings, IEEE, vol. 1. IEEE, 1996,
pp. 235–239.

[5] L. C. Pond and V. O. Li, “A distributed time-slot assignment protocol
for mobile multi-hop broadcast packet radio networks,” in Military
Communications Conference, 1989. MILCOM’89. Conference Record.
Bridging the Gap. Interoperability, Survivability, Security., 1989 IEEE.
IEEE, 1989, pp. 70–74.

[6] S. Kim, R. Fonseca, P. Dutta, A. Tavakoli, D. CUller, P. Levis,
S. Shenker, and I. Stoica, “Flush: A reliable bulk transport protocol
for multihop wireless networks,” Proceeding of SenSys, 2007.

[7] I. Rhee, A. Warrier, J. Min, and L. Xu, “Drand: distributed randomized
tdma scheduling for wireless ad-hoc networks,” in Proceedings of the
7th ACM international symposium on Mobile ad hoc networking and
computing. ACM, 2006, pp. 190–201.

[8] T. Herman and S. Tixeuil, “A distributed tdma slot assignment algorithm
for wireless sensor networks,” Algorithmic Aspects of Wireless Sensor
Networks, pp. 45–58, 2004.

[9] C. Peskin, “Mathematical aspects of heart physiology,” Institute of
Mathematical Sciences, 1975.

[10] T. Lennvall, S. Svensson, and F. Hekland, “A comparison of wirelesshart
and zigbee for industrial applications,” IEEE Workshop on Factory
Communication Systems, 2008.

[11] I. An, “Standard wireless systems for industrial automation: Process
control and related applications, isa std,” ISA-100.11 a-2009, 2009.

[12] J. Degesys, I. Rose, A. Patel, and R. Nagpal, “Desync: Self-organizing
desynchronization and tdma on wireless sensor networks,” in Inter-
national Conference on Information Processing in Sensor Networks
(IPSN), April 2007.

[13] R. Pagliari, Y.-W. P. Hong, and A. Scaglione, “Bio-inspired algorithms
for decentralized round-robin and proportional fair scheduling,” IEEE
Journal on Selected Areas in Communications, Special Issue on Bio-
Inspired Networking, vol. 28, no. 4, 2010.

[14] A. Motskin, T. Roughgarden, P. Skraba, and L. Guibas, “Lightweight
coloring and desynchronization for networks,” in INFOCOM. IEEE,
2009, pp. 2383–2391.

[15] H. Kang and J. L. Wong, “A localized multi-hop desynchronization
algorithm for wireless sensor networks,” in INFOCOM. IEEE, 2009,
pp. 2906–2910.

[16] Y.-W. Hong and A. Scaglione, “Time synchronization and reach-back
communications with pulse-coupled oscillators for uwb wireless ad
hoc networks,” in IEEE Conference on Ultra Wideband Systems and
Technologies, 2003, pp. 190–194.

[17] R. Pagliari and A. Scaglione, “Scalable network synchronization with
pulse-coupled oscillators,” IEEE Trans. Mobile Computing, vol. 10,
no. 3, pp. 392–405, 2011.

[18] D. Lucarelli and I.-J. Wang, “Decentralized synchronization protocols
with nearest neighbor communication,” in Sensys, 2004.

[19] E. Mallada and K. Tang, “Synchronization of coupled oscillators,” in
ITA, 2010.

[20] G. Werner-Allen, G. Tewari, A. Patel, M. Welsh, and R. Nagpal, “Firefly-
inspired sensor network synchronicity with realistic radio effects,” in
Proceedings of the 3rd international conference on Embedded networked
sensor systems. ACM, 2005, pp. 142–153.

[21] X. Wang and A. Apsel, “Pulse coupled oscillator synchronization for
communications in uwb wireless transceivers,” in MWSCAS, 2007.



13

[22] L. Ferrari, A. Scaglione, and Y.-W. Hong, “Convergence results on
pulse coupled oscillators protocols in locally connected networks,” 2015,
submitted to IEEE Transactions on Networking.

[23] R. Mirollo and S. Strogatz, “Synchronization of pulse-coupled biological
oscillators,” SIAM J. Appl. Math., vol. 50, no. 6, pp. 1645–1662, 1990.

[24] Y. Wang and F. J. Doyle, “Optimal phase response functions for
fast pulse-coupled synchronization in wireless sensor networks,” IEEE
Transactions on Signal Processing, vol. 60, no. 10, pp. 5583–5588, 2012.

[25] Y. Wang, F. Nunez, and F. J. Doyle, “Energy-efficient pulse-coupled
synchronization strategy design for wireless sensor networks through
reduced idle listening,” IEEE Transactions on Signal Processing, vol. 60,
no. 10, pp. 5293–5306, 2012.

[26] ——, “Statistical analysis of the pulse-coupled synchronization strategy
for wireless sensor networks,” IEEE Transactions on Signal Processing,
vol. 61, no. 21, pp. 5193–5204, Nov 2013.

[27] A. Tyrrell, G. Auer, and C. Bettstetter, “On the accuracy of firefly
synchronization with delays,” in Applied Sciences on Biomedical and
Communication Technologies, 2008. ISABEL ’08. First International
Symposium on, Oct 2008, pp. 1–5.

[28] L. Ferrari, R. Gentz, A. Scaglione, and M. Parvania, “The pulse coupled
phasor measurement units,” IEEE Smartgridcomm, 2014.

[29] “Ieee standard for a precision clock synchronization protocol for
networked measurement and control systems,” IEEE Std 1588-2008
(Revision of IEEE Std 1588-2002), pp. c1–269, Jul 2008.

[30] D. Dardari and M. Z. Win, “Ziv-zakai bound on time-of-arrival es-
timation with statistical channel knowledge at the receiver,” in IEEE
International Conference on Ultra-Wideband, 2009. IEEE, 2009, pp.
624–629.

[31] R. Wannamaker, S. Lipshitz, J. Vanderkooy, and J. Wright, “A theory of
nonsubtractive dither,” Signal Processing, IEEE Transactions on, vol. 48,
no. 2, pp. 499–516, 2000.

[32] T. Aysal, M. Coates, and M. Rabbat, “Distributed average consensus
with dithered quantization,” IEEE Transactions on Signal Processing,
vol. 56, no. 10, pp. 4905–4918, October 2008.

[33] S. Ashkiani and A. Scaglione, “Discrete dithered desynchronization,”
arXiv preprint arXiv:1210.2122, 2012.

[34] C. R. Anderson and T. S. Rappaport, “In-building wideband partition
loss measurements at 2.5 and 60 ghz,” Wireless Communications, IEEE
Transactions on, vol. 3, no. 3, pp. 922–928, 2004.




