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Data injection attacks in randomized gossiping
Reinhard Gentz, Sissi Xiaoxiao Wu, Hoi-To Wai, Anna Scaglione, Amir Leshem

Abstract—The subject of this paper is the detection and miti-
gation of data injection attacks in randomized average consensus
gossip algorithms. It is broadly known that the main advantages
of randomized average consensus gossip are its fault tolerance
and distributed nature. Unfortunately, the flat architecture of the
algorithm also increases the attack surface for a data injection
attack. Even though we cast our problem in the context of
sensor network security, the attack scenario is identical to existing
models for opinion dynamics (the so called DeGroot model) with
stubborn agents steering the opinions of the group towards a
final state that is not the average of the network initial states.
We specifically propose two novel strategies for detecting and
locating attackers, and study their detection and localization
performance numerically and analytically. Our detection and
localization methods are completely decentralized and, therefore
nodes can directly act on their conclusions and stop receiving
information from nodes identified as attackers. As we show
by simulation the network can often recover in this fashion,
leveraging the resilience of randomized gossiping to reduced
network connectivity.

Index terms— data injection attack, attack detection, de-
centralized learning, randomized gossip protocol

I. INTRODUCTION

The key advantage of gossip-based algorithms is the built-
in fault tolerance to node failures, as nodes can reorganize
themselves automatically. To prevent interference from unau-
thorized nodes, authentication and encryption methods can be
used (see e.g. [2], [3]). However, in the case of an insider
attack gossip-based algorithms are highly vulnerable, even if
only one node is compromised. In fact, the flat, self-organizing
architecture, which is the selling feature for these algorithms,
can become a liability.

In this paper, we consider the randomized average consensus
gossiping protocol introduced in [4] and focus on the insider
attack scenario, where authentication and encryption have
failed. Noting that average consensus gossiping is equivalent
to the DeGroot model dynamics [5], the attack scenarios are
identical to models that have emerged for the study of stubborn
agents or zealots in social networks (see e.g. [6]–[11]). We
propose decentralized strategies which aim at detecting and
localizing insider attackers by analyzing the statistics of the
nodes’ states, as the nodes in the network perform the algo-
rithm several times starting from different initial conditions.
While in general data injection from stubborn agents will not
lead to a consensus [6], [12], in our paper we model the
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attackers in the randomized consensus algorithm as a group
of coordinated agents that are trying to steer the consensus
state to a value of their choosing, while hiding their nature by
judiciously preserving the expected exponential convergence
rate [13] and leading the network to consensus towards a
desired final state (see Section II-A). This is the worst case
scenario, since the network will still converge to consensus,
but to the wrong state.

Specifically, we refer to the proposed strategies as the time
difference and spatial difference methods respectively and refer
to nodes that are not attackers as normal nodes. Our methods
are fully decentralized and hence each normal node can detect
and localize neighboring attackers independently. Moreover,
the spatial strategy can even detect an attack which is not
a direct neighbor of the sensing node. Once a normal node
detects and localizes an attacker, it can report the anomaly to
a central authority or, alternatively, cut future communication
with the attacker. Eventually, the proposed algorithms isolate
all the attackers from the network, thereby preventing future
harm to the whole system. It is worth mentioning that each
node only needs to collect its local statistical information by
evaluating messages transmitted by nodes in the neighborhood
as the protocol is executed. Therefore, no additional commu-
nication overhead is required in the two proposed strategies.

A. Prior art on data-injection in gossip based algorithms

To the best of our knowledge, algorithms to detect and
mitigate insider attacks in gossip-based networks have received
limited attention so far. Exceptions are [14], [15] and the
very recent submission [16]. In [15] the authors propose to
detect injection attacks using a likelihood ratio test that is
appropriate for synchronous average consensus, but not for
its more popular asynchronous implementation, while [16]
proposes to discard neighbors state values that are extreme
(maxima or minima), given that malicious agents do not
average their state with that of normal nodes. Reference
[14], instead, proposes two protection schemes for randomized
consensus algorithms. The first one is motivated by the fact
that the convergence speed is usually slower in the presence
of an attacker. Thus, a data injection attack can be spotted by
detecting possible anomalies in the convergence speed, which
has an exponential trend. Note that, the “normal” convergence
speed can be estimated only if we have prior knowledge of the
underlying physical model; e.g., see [4], [13], [17]. The second
scheme in [14] is based on using cryptographic signatures.
However, for the detection of the attacker a node needs to be
surrounded by a majority of normal neighbors. Furthermore,
the cryptographic solution does not detect unintentional bias at
a node, which can result in similar catastrophic results. In this
work, we consider a data injection attack model in which the

Author copy. Accepted for publication. Do not redistribute. 



2

attackers are insiders, they are possibly coordinated and also
deceive their neighbors by following an expected convergence
rate. Therefore, the first detection scheme in [14] is not even
applicable to our target problem. We propose two detection
schemes that are based on computing two metrics at each
node whose high values are indicators of a possible attack.
The metrics are computed at each node locally, overhearing
the messages exchanged in the neighborhood over several
instances of average consensus.

This paper is organized as follows. In Section II, we describe
the pairwise randomized consensus algorithm and introduce
the data injection attack model. In Section III, we propose
the detection and localizing strategies for eliminating the
attackers. The performance analysis for the proposed strategies
are analyzed in Section IV. We conclude with simulation
results in Section V.

Notations: We use boldfaced letter to denote vector/matrix.
For a vector x, [x]i denotes its ith element; similarly, for a
matrix A, [A]ij denotes its (i, j)th element.

II. CONSENSUS NETWORK MODEL

Let us consider a sensor network, which is described by
a connected, undirected graph G = (V,E), where V =
{1, ..., n} denotes a set of nodes and E ⊆ V × V denotes the
connections between the nodes. Assume that the sensor nodes
continuously perform a randomized consensus algorithm. We
assume that at each iteration of the detection algorithm, a total
of K instances of the consensus algorithm have taken place,
either running in parallel or sequentially, and each node has
overheard many, if not all, transmissions in its neighborhood
and accrued historical data of K runs of the consensus
algorithm from its vantage point, which we enumerate in this
paper with the superscript k, with k ∈ {1, . . . ,K}. In our
notation k ∈ N is used as a superscript in reference to the
instance of the consensus algorithm and the time index t ∈ N
denotes the specific iteration. Correspondingly, the random
vector xk(t) = (xk1(t), ..., xkn(t))> ∈ Rn represent the states
at the tth consensus iteration1.

Let the initial state of node i ∈ V be xki (0) = γki , with γki
being a stationary discrete random process. The goal of the
consensus algorithm is to compute the network initial states’
average

xkav :=
1

n
1>xk(0) =

1

n
1>γk, (1)

where 1 is an all-one vector. The consensus algorithm we con-
sider in this work is the random pairwise exchange algorithm
[4], shown in Algorithm 1. We remark that the non-negative
parameter Pij , which is probability that node i selects node
j to update with, in Algorithm 1, satisfies

∑n
j=1 Pij = 1

and Algorithm 1 can be implemented asynchronously. Each
sensor node does not need to know the iteration index t of
the protocol. The updates in Algorithm 1 can be conveniently
expressed as:

xk(t) = W (t− 1)xk(t− 1), (4)

1One can assume a random waiting time between updates, for instance
draw from i.i.d. exponential distributions [4]

Algorithm 1: Randomized consensus protocol

Input: no. of iterations T , initial states: xki (0) ∀ i ∈ V .
for t = 1 : T do

• Uniformly wake up a random node i ∈ V .
• Node i selects node j from its neighborhood with

the probability

Pij , where j ∈ Ni and Ni := {j : (i, j) ∈ E}. (2)

• Node i and j update their states as follows

xki (t+ 1) = xkj (t+ 1) =
xki (t) + xkj (t)

2
; (3)

Other nodes keep their original states, i.e.,
xkv(t+ 1) = xkv(t) for all v 6= i, j.

where W (t) is the transition matrix at instance k and time t.
Define [P ]ij = Pij and Σ as a diagonal matrix with [Σ]ii =∑n
j=1(Pij+Pji), the expected transition matrix can be written

as

W = E [W (t)] = I − 1

2n
Σ +

P + P>

2n
. (5)

It can be verified that W is non-negative, symmetric and
doubly stochastic. We have the expected states

E[xk(t)|xk(0)] = WE
[
xk(t− 1)|xk(0)

]
= W

t
xk(0),

Under some mild assumptions, the protocol above finds the
true average xkav . Denote λ2(W ) as the second largest eigen-
value of W , we have

Fact 1 For each k, the state at every sensor i ∈ V converges
to a ∆-neighborhood of xkav with a high probability, i.e.

P
(
|xki (t)− xkav| < ∆ max

j∈V
|xkj (0)|

)
≥ 1−∆, (6)

for all ∆ ≥ 0 and t ≥ 3 log ∆−1/ log λ2(W )−1.

The detailed proof and conditions of Fact 1 can be found in
[4, Theorem 3]. Notice that the lower bound on t is finite only
if λ2(W ) < 1, which depends on the design of P and thus
can be satisfied when G is a connected graph; see [13] for
further discussions.

A. Data Injection Attack Model

The data injection attack model we consider in this paper
is analogous to the stubborn agent model studied under the
framework of DeGroot opinion dynamics in social learning
[5], whose average convergence properties were studied in [6].
We assume that the sensor network is compromised by a set
of attackers, denoted by Vs ⊆ V . For simplicity, we set Vs =
{1, ..., ns} and ns ≤ n. The remaining normal nodes form the
set Vr = V \Vs. The goal of the attackers (or malicious nodes)
is to steer the consensus result of the network to a certain target
value of their choice αk 6= xkav , so that the states converge to

lim
t→∞

xk(t) = αk1. (7)
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As we shall see in Section III, αk is a stationary discrete
random process.

To stage the attack, the malicious nodes follow a modified
update rule. That is, under the consensus protocol of Algorithm
1, if a malicious node j ∈ Vs is selected at iteration t, in lieu
of (3), the node’s state will be generated as

xkj (t) = αk +mk
j (t), (8)

where mk
j (t) is a zero-mean artificial noise generated by the

attackers to hide their malicious intent from the normal nodes.
Notice that a normal node could easily detect a malicious agent
with no artificial noise as the node’s state over time would be
constant, xks(t) = xks(0), and thus easily detectable.

We claim that under the modified update rule (8) and the
assumptions that (i) the attackers are not isolated from the
network and (ii) the induced sub-graph G[Vr] is strongly
connected, the attackers can successfully steer the consensus
result of the network:

limt→∞ E[xk(t)|αk] = αk1. (9)

To show (9), let us first define

xk(t) =
(
sk(t)>, rk(t)>

)>
, (10)

where sk(t) ∈ Rns , rk(t) ∈ Rn−ns correspond to the states
of the malicious nodes and normal nodes, respectively. As a
consequence of the update rules in (3) and (8), we have

E[sk(t)|αk] = αk1, ∀ t ≥ 1. (11)

Moreover, the expected transition matrix W becomes

W = E[W (t)] =

(
I 0
B D

)
, (12)

where the malicious nodes correspond to the identity matrix
in W as they are never affected by the other nodes. It is well
known that [18, Theorem 1.1, Chapter 2]:

Fact 2 If D is sub-stochastic and irreducible, then it holds
that ‖D‖2 < 1.

Notice that B 6= 0 as the attackers are not isolated, thus
D is sub-stochastic. Moreover, D is irreducible as G[Vr] is
connected. It can be verified that

E[rk(t)|γk, αk] = αk
∑t
s=0D

t−sB1 +Dtγk. (13)

As ‖D‖2 < 1 and using the identities
∑n−1
t=1 D

t = (I −
Dn)(I −D)−1 and B1 +D1 = 1,∑t

s=0D
t−sB1 = 1−Dt+11,

As Dt decays to zero, we have limt→∞ E[rk(t)|γk, αk] =
αk1. Combining this with (11) yields (9).

Remark 1 From the normal nodes’ point of view, the attack-
ers appear to make progress towards the final value xk(∞).
If there is no attacker, xk(∞) would be the true average of all
nodes; in the presence of coordinated attackers, it will tend to
αk. At the same time, the attackers states converge with the
expected convergence speed to αk.

Fig. 1: Different tasks involved in the attack detection scheme.

Remark 2 When there are multiple attackers in the network,
we assume that they are coordinated such that all the malicious
agents bias their state with the same value αk. Otherwise, the
network almost surely will not reach consensus [6], [19], and
thus attacks can be detected by spotting different final states.
Interestingly, a recent submission [16] proposed an alternative
defense mechanism against attackers for synchronous gos-
siping, which is based on discarding extreme values in the
consensus iteration. It is useful to notice that their method does
not generally work with random gossiping and against the
noisy coordinated attack technique we consider. Our methods,
in contrast, can be applied very successfully against the attack
model in [16] in which the malicious nodes simply do not
average with their neighbors, as well as the more insidious
one we consider, as we show by simulation in Section V.

III. DETECTING DATA INJECTION ATTACK

We consider three detection tasks, to be performed in a
decentralized fashion by the normal nodes i ∈ Vr in order.

(I) Attacker Detection Task — The first test checks if the
presence of attacker(s) in the network:

H0 : No attacker in the network, i.e., Vs = ∅,
H1 : At least one attacker in the network, i.e., Vs 6= ∅.

(II) Neighborhood Detection Task — The second test checks
if an attacker is present in the neighborhood of node i:

Hi0 : No attacker in the neighborhood, i.e., Vs ∩Ni = ∅,
Hi1 : Attacker in the neighborhood, i.e., Vs ∩Ni 6= ∅.

(III) Localization Task — The third test attempts to locate
the malicious node in the neighborhood of node i. For all
j ∈ Ni, we check:

Hij0 : node j is not an attacker, i.e., j /∈ Vs.
Hij1 : node j is an attacker, i.e., j ∈ Vs.

Note that the localization task is performed only if the neigh-
borhood detection task decides that Hi1 is true. We depict the
detection/localization targets of the three tasks in Figure 1.

In the case when a central authority (CA) exists, node i can
report the tests’ results to the CA. The CA will take appropri-
ate actions, possibly fusing the information of multiple nodes.
We also propose the following decentralized protection scheme
which does not require the existence of a CA. Specifically,
upon the completion of task II and task III, node i shall cut
all future communication to the located malicious nodes, i.e.,
E icut = {ij ∈ E : Ĥij = Hij1 } where Ĥij is the outcome
from the localization task. If completed successfully by all
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Fig. 2: Each normal node H will perform detection and localization indepen-
dently, therefore isolating attacker A from the network.

nodes, we can effectively isolate the attackers and prevent any
future harm to the network. An illustration of the detection
and localization steps is depicted in Figure 2. We mention that
this protection scheme is successful if all edges to an attacker
are disconnected and the attacker cannot do any harm, i.e.
‖B‖2 = 0. False detections, as long as they do not disconnect
the graph, only slow down convergence.

Our detection schemes rely on finding the statistical anoma-
lies through statistics computed at the normal nodes. In
particular, we make the following assumptions:

(A1) : γ̄ := E[γki ], ∀ i ∈ Vr. (A2) : γ̄ 6= ᾱ := E[αk],

where we emphasize that the expectation above is taken
w.r.t. k. The first assumption (A1) states that the initial values
for the normal nodes have the same mean γ̄ for all normal
nodes; and the second assumption (A2) states that γ̄ is different
from ᾱ, i.e., the initial value for the attacker.

A. Detection through the temporal difference

We introduce a strategy which detects the anomalies caused
by the malicious agent by evaluating the (average) temporal
difference of the values held by normal nodes. To explain the
intuition, observe that the expected initial value of a malicious
agent s ∈ Vs is different from that a normal agent j ∈ Vr, i.e.,

E[xks(0)] = ᾱ 6= γ̄ = E[xkj (0)]. (14)

While when t → ∞, the network will be misled by the
malicious nodes, i.e.,

E[xks(∞)] = ᾱ = E[xkj (∞)]. (15)

This implies that the quantity |xki (∞) − xki (0)| will be close
to zero if i ∈ Vs or be large otherwise, indicating an anomaly.

The temporal difference method is developed from the
observation above. Consider a normal node i ∈ Vr, let
xkj (Tij), x

k
j (0) be respectively the last and the first observed

state value for a node j in the neighborhood of node i. The
following metric can be evaluated:

ξij :=
1

K

K∑
k=0

(xkj (Tij)− xkj (0)), (16)

for all j ∈ Ni. Notice that if Tij is sufficiently large and node
j is not malicious, then ξij tends to be large.

We propose the following detection criterion for the neigh-
borhood detection task (which implies attacker detection):∑

m∈Ni

|ξim − ξ̄i|
Hi0
≶
Hi1

δI , (17)

where ξ̄i := (1/|Ni|)
∑
m∈Ni ξim and δI > 0 is some pre-

designed threshold. The detection criterion in (17) finds if
there is an outlier in Ni for the set of statistics {ξim}m∈Ni .
This, however, implies that a node that has no attacker in its
neighborhood cannot detect that an attack is present in the net-
work. This can also be seen mathematically as E[ξim− ξ̄i] = 0
for both Hi0 ∩ H0 and Hi0 ∩ H1 (17), where the ∩ operator
returns true if both events are true. Note that we require that
there is at least one normal neighbor to detect an attack.

For the localization task, we propose the following criterion:

|ξij |
Hij1
≶
Hij0

εI (18)

for all j ∈ Ni. The intuition behind this criterion was
given at the beginning of this subsection. We remark that
the localization task is performed only if the neighborhood
detection task returns Hi1.

B. Detection through the spatial difference

This subsection describes a spatial difference strategy for
data injection attack detection. Herein, our main idea is to
exploit the fact that a malicious node, if it exists, always tries
to influence and steers the nodes away from their true average;
if there is no malicious node in the network, the average state
of all nodes are identical. Mathematically, if 0 < t <∞,

E[xkm(t)− xkj (t)|H0] = 0, E[xkm(t)− xkj (t)|H1] 6= 0, (19)

i.e., anomalies can be found in the spatial difference of states.
Define Tk ⊆ N as the set of sampling times observed by a

normal node i at the kth instance of the consensus algorithm.
We consider the following metric for all m ∈ Ni ∪ {i}:

Xk
im :=

∑
t∈Tk

(
xkm(t)− 1

|Ni|
∑
j∈Ni

xkj (t)
)
. (20)

Notice that |Xk
im| is the difference between the value held by

a neighboring node m and the sum of all the nodes in the
same neighborhood (excluding node i itself), and then sum
up this difference from all the observed consensus iterations.
Compared to the temporal method, the spatial difference
method registers an anomaly even if attacks are not staged
directly in the neighborhood of node i. This is a double-edged-
sword because while it indicates that one can attain situation
awareness throughout the network, not just in the immediate
proximity of attackers, it complicates the localization task.

Based on Xk
im, we have the following criterion for both

attacker detection and neighborhood detection tasks:

Si1 :=
1

|Ni|
∑
m∈Ni

( 1

K

K∑
k=1

Xk
im

)2 H0

≶
H1

δII , (21)

where we shall use a different threshold δ′II > δII for the
neighborhood detection task. Furthermore, we require that
node i which performs (21) to have at least 2 neighbors, from
which at least one is normal.

For the localization task, we define the following metric:

X̃k
ij :=

∑
t∈Tk

(
xkj (t)− xki (t)

)
−Xk

ii, (22)
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which has a similar interpretation as Xk
im. This metric com-

pares a neighboring node j to the node i itself and the
neighborhood average with respect to the node itself. The
localization task is performed by the following test:

Sij2 :=
( 1

K

K∑
k=1

X̃k
ij

)2 Hij0
≶
Hij1

εII (23)

The next section analyzes the performances of both temporal
difference and spatial difference methods.

IV. PERFORMANCE ANALYSIS

We first define the following performance metric — for the
attacker detection task (performed by the ith agent):

P iad := P (Ĥ = H1|H1), P iaf := P (Ĥ = H1|H0),

for the neighborhood detection task:

P ind := P (Ĥi = Hi1|Hi1), P inf := P (Ĥi = Hi1|Hi0),

for the localization task:

P ijld := P (Ĥij = Hij1 |H
ij
1 ), P ijlf := P (Ĥij = Hij1 |H

ij
0 ),

Our analysis holds under the following assumptions on the
statistics of the attacker and normal nodes:
• The initial state for normal nodes, xki (0) = γki , is

identically independently distributed (i.i.d.) with mean γ̄
with sub-Gaussian parameter σ2

γ .
• The initial state for malicious nodes, αk, is i.i.d. with

mean ᾱ with sub-Gaussian parameter σ2
α.

• The artificial noise for malicious nodes, mk
i (t), is

i.i.d. with zero mean and sub-Gaussian parameter σ2
m.

Notice that a random variable (r.v.) z with mean z̄ is said to
have sub-Gaussian parameter σ2

z if

E
[
eλ(z−z̄)] ≤ eσ2

zλ
2/2, ∀ λ ∈ R.

If z is also Gaussian, then σ2
z is the variance of z.

Remark 3 Even when these assumptions are violated, the
metrics can be applied and loose bounds (e.g., using gen-
eralized Markov inequality) are obtainable as long as the
distribution of the attackers states has finite moments. In
the case of infinite moments the metrics however will fail.
In addition, our simulation results test the same metrics in
scenarios that violate the assumptions above to show their
effectiveness.

A. Analysis for the temporal difference strategy

Observe that the metric ξij is evaluated as a finite sum of in-
dependent sub-Gaussian r.v.s. Define the following constants:

µi =
|Ni,r|
|Ni|

(ᾱ− γ̄), Ni,r = Vr ∩Ni, Ni,s = Vs ∩Ni, (24)

σ2
i =

(
|Ni|2 − 2|Ni|+ |Ni,s|

|Ni|2

)
σ2
m +

|Ni,r|2

|Ni|2
σ2
α +
|Ni,r|
|Ni|2

σ2
γ ,

We have the following performance guarantees:

Theorem 1 Let Tij →∞. We have

P inf ≤ 2|Ni| · exp
(
−Kδ2

I/(2σ
2
γ |Ni|(|Ni| − 1))

)
, (25)

P ind ≥ 1− exp
(
−K(max{0,−δI + |µi|})2/(2σ2

i )
)
, (26)

When the initial states and artificial noise are Gaussian, we
have

P inf ≤ 2|Ni| ·Q
(√

KδI/(σγ
√

(|Ni| − 1)|Ni|)
)
, (27)

P ind ≥ Q
(√

K(δI + µi)/σi

)
+Q

(√
K(δI − µi)/σi

)
. (28)

The result in Theorem 1 is proven in Appendix A for the sub-
Gaussian case. The analysis above shows the impact of the
variance on the detection (17) performance. We see that the
false alarm rate (25) depends solely on σ2

γ , while the miss
detection rate (26) depends on the other parameters as well.

From Theorem 1, we observe that δI should be chosen to be
smaller than |µi| to yield a non-trivial bound. In this case, let
P ind be the minimum required detection rate, the false alarm
rate can be bounded as:

P inf ≤ 2|Ni| · exp
(
− K

|Ni|

(
|µi| −

√
2σ2
i

K log 1
1−P ind

)2

2σ2
γ(|Ni| − 1)

)
.

This implies that for a given requirement on the detection rate
probability, the false alarm probability will only be influenced
by the choice of K.

Following the same line of reasoning we can prove the
following performance bounds for the localization task:

Lemma 1 Let Tij →∞. We have

P ijlf ≤ exp
(
−K(max{0,−εI + |ᾱ− γ̄|})2/(2(σ2

α + σ2
γ))
)
,

(29)
P ijld ≥ 1− 2 · exp

(
−Kε2I/(2σ2

m)
)
. (30)

For the case of Gaussian random initial states and attackers
noise we have:

P ijlf = Q

 −εI + |ᾱ− γ̄|√
(σ2
α + σ2

γ)/K

−Q
 εI + |ᾱ− γ̄|√

(σ2
α + σ2

γ)/K


(31)

P ijld = 1− 2Q
(√

KεI/σm

)
. (32)

Lemma 1 is proven in Appendix B for the sub-Gaussian
case. Notice that the formulas in (31) and (32) are exact.
Once again, if K is sufficiently large, (31) and (32) are
good approximations for the sub-Gaussian case as well as we
verified by simulation.

Remark 4 The requirement that Tij →∞ is imposed for the
sake of obtaining constants that can be evaluated in closed
form. Without such assumption, we can still obtain bounds
similar to Theorem 1 and Lemma 1 and the exponential scaling
with K will remain valid.
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B. Analysis for the spatial difference strategy

We perform the following analysis under the assumption
that the initial states γk, αk and attackers’ noise mk(t) are
Gaussian distributed. Our first result is the following char-
acterization of the random variable Xk

im. Let ei be the unit
vector with 1 being in the ith entry. We define

ηim = (em −
1

|Ni|
∑
j∈Ni

ej)
>
[

0
(γ̄ − ᾱ)

∑
t∈TkD

t1

]
. (33)

Also, τim and βim are constants that are bounded as

τ2
im = Cτim ·

(
σ2
γ

λ2(W )

(1− λ2(W ))2

)
, (34)

β2
im = Cβim ·

(
(σ2
γ + σ2

α)
3λ̃− 1

(1− λ̃)2
+ σ2

m

3λ̃− λ̃2

(1− λ̃)3

)
, (35)

for some Cτim , Cβim < ∞ that are independent of the
network topology nor the statistics of the r.v.s, where λ̃ =
max{λ̂2, λ1(D)}. It can be proven that:

Theorem 2 Assume that γk, αk and mk(t) are Gaussian, the
random variable Xk

im is also Gaussian with statistics

H0 : Xk
im ∼ N (0, τ2

im) and H1 : Xk
im ∼ N

(
ηim, β

2
im

)
.

The results hold for all m ∈ Ni ∪ {i} and i ∈ Vr.

We remark that the hypothesis H1 refers to the scenario
when an attacker exists somewhere in the network (not nec-
essarily in Ni). In other words, the statistics of Xk

im changes
whenever at least one attacker exists therefore, this metric is a
suitable candidate for performing the attacker detection task.

In fact, the difficulty in establishing Theorem 2 lies on the
fact that Xk

im is an infinite sum of correlated random variables.
It is not obvious whether its variance is bounded. In our proof,
we exploit the sub-stochasticity of D and that the infinite sum
may be treated as a converging geometric series. The proof to
the proposition can be found in Appendix C:

Our main result is summarized as follows.

Theorem 3 Assume that γk, αk,mk(t) are Gaussian. The at-
tacker detection performance of the spatial difference strategy
is given as:

P iaf ≤ exp
(
−K max{0, |Ni|δII − c0}/c1

)
. (36)

for some c0, c1 that scale with τim. Also,

1− P iad ≤ exp (−K max{0,−|Ni|δII + c2}) ,

for some c2 > 0 that scales with βim, ηim.

The proof is relegated to Appendix D.
Next we characterize the localization performance. In the

following, we shall assume that at least one attacker is present
in the network, i.e., H1 holds. Our first step is to study the
statistics of X̃k

ij . Observe that

η̃ij = E[X̃k
ij ] = (ej − ei)>

[
0

(γ̄ − ᾱ)
∑
t∈TkD

t1

]
− ηii.

Moreover, the variance can be bounded as

β̃2
ij := var(X̃k

ij) ≤ 4 max{var
(∑

t∈Tk(xkj (t)− xki (t))
)
, β2
ii}

In the same spirit as the proof of Proposition 2, it can be
verified that var

(∑
t∈Tk(xkj (t) − xki (t))

)
< ∞ and thus β̃2

ij

is bounded from above. We remark that the values of η̃ij , β̃2
ij

are dependent on the cases (Hij0 , Hij1 ) we are in. For instance,
it can be seen that |η̃ij | is larger in Hij1 than in Hij0 .

Knowing the statistics above, the localization performance
can be evaluated straightforwardly as:

Lemma 2 Assume that γk, αk,mk(t) are Gaussian, the lo-
calization performance of the spatial difference strategy is
given as:

P ijlf ≤ Q
(√

K(
√
εII − η̃ij)/β̃ij

)
+Q

(√
K(
√
εII + η̃ij)/β̃ij

)
1− P ijld ≤

Q
(√

K(η̃ij −
√
εII)/β̃ij

)
−Q

(√
K(
√
εII + η̃ij)/β̃ij

)
.

The proof can be found in Appendix E.
Compared to the analysis of the temporal strategy, we

observe a similar improvement in the performance that decays
exponentially in K. Moreover, the bounds obtained for the at-
tack detection task using the spatial difference method depend
explicitly on the network topology, while the respective bound
for neighborhood detection task with the temporal difference
method only depends on the neighborhood size.

Remark 5 We remark that the analysis above can be extended
to sub-Gaussian initial states, e.g., by applying the general
results from [20], [21]. We omit such extensions in the interest
of space limitation.

C. Optimal Attacker’s Strategy

We consider a scenario when the attacker optimizes his/her
strategy to maximize the damages caused to the consensus
network. Specifically, we focus on the defense strategy em-
ploying the temporal difference detection (cf. Section III-A)
and assume that the attacker is aware of the strategy employed
by the network, including the parameter δI .

The attacker’s goal is to introduce the maximum pertur-
bation |ᾱ − γ̄| to the network’s final state, while avoiding
being detected. For simplicity, we assume that σ2

α = 0 and
the attacker optimizes its attack statistics by:

max
ᾱ

|ᾱ− γ̄| s.t. P ind(ᾱ) ≤ Π, ∀ i ∈ Vr, (37)

where Π ∈ (0, 1) is the detection probability threshold for the
attacker.

Due to the intractability of the constraint on P ind(ᾱ) in
Problem (37), we bound the detection probability and derive
a conservative approximation to (37). The following can be
derived as an extension to Theorem 1:

Lemma 3 Let Tij →∞. We have

P ind(θatt) ≤ 2|Ni| · exp
(
−K (max{0, |Ni|−1δI − |µi|})2

2σ2
i

)
,

(38)
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Fig. 3: The Manhattan network topology considered. First we select only node
1 as an attacker, while all other nodes are normal. Then, in the second set of
experiments, we consider and increasing number of nodes to be an attacker
i.e node [1], [1, 2], [1, 2, 3] . . ..

When the initial states and artificial noise are Gaussian,

P ind(θatt) ≤ 2|Ni| ·Q
(√

K
(
|Ni|−1δI − |µi|

)
/σi

)
, (39)

see the definitions of the constants in (24).

The proof can be found in Appendix F. Notice that the bounds
above are non-trivial only when |Ni|−1δI ≥ |µi|, since other-
wise the bounds become equal to 1. Since |µi| ∝ |ᾱ− γ̄|, this
limits the maximum deviation that the attacker can introduce to
the network. Based on the bound from Theorem 1, we observe
that −δI + |µi| ≤ 0, then P ind ≥ 1 and any attack will be
detected. Applying the results above, an approximate optimal
attack strategy can be found by replacing P ind(θatt) in (37)
with the right hand side of (38) or (39).

To obtain an optimal solution to the approximated (37), we
observe that the bounds in (38) (or (39)) are monotonically
increasing with |µi|. Now, to maximize |ᾱ− γ̄|, the right hand
side of (38) (or (39)) must equal to Π. Taking the sub-Gaussian
case as an example, suppose the consensus network designs a
threshold δI such that the false alarm probability is no bigger
than P̄ inf, it can be verified that the maximum perturbation
subject to a detection probability Π is:

|ᾱ? − γ̄| = max
{

0,

√
2σ2

γ |Ni|(||N i| − 1)

K|Ni,r|2
log
(2|Ni|
P̄ inf

)
−

√
2σ2

i |Ni|2
K|Ni,r|2

log
(2|Ni|

Π

)}
.

Note that as K →∞, the maximum perturbation goes to zero.

V. NUMERICAL RESULTS

In this section, we numerically evaluate the performance of
the proposed methods. For the simulation results that follow,
we consider a Manhattan topology with n = 9 nodes, as
shown in Figure 3. The randomized gossip-based consensus
protocol (cf. Algorithm 1) is run with Pij = 1/|Ni| (cf. (2)),
and is terminated with T = 500. We have αk ∼ N (0, 1),
γki ∼ U [−0.5, 1.5], mk

i (t) ∼ U [−λ̂t, λ̂t]. The Monte Carlo
simulation is run with 103 trials.

Before we present the performance evaluations, let us de-
scribe a few observations that motivated us to develop our
methods. In Figure 4, we show the evolution of the states of all
nodes in an instance of the average consensus algorithm when
an attacker is present. Recalling that ξij ≈ xkj (Tij) − xkj (0),
i.e., the difference between the terminal and initial state values,
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Fig. 4: State evolution in a single random consensus run. The dashed lines
are the state trajectories for the normal nodes. The malicious node (black) is
forcing all normal nodes (dashed) to its target value α = 0, while the true
xav = 0.5 (green). Furthermore the noise of the malicious agent is given by
the true λ2 of the network without attackers (blue).
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Fig. 5: (Left) Scatter plot of normal node and attacker (x2[k], x1[k]); (Right)
Scatter plot of 2 normal Node (x2[k], x3[k]).

we see that ξij tends to be larger if node j is normal, i.e.,
j ∈ Vr. On the other hand, Figure 5 presents a scatter plot for
the value of (xki (t), xkj (t)) for two pairs of adjacent nodes,
one with a malicious node and one without. We observe that
in the former case, the scatter plot is tilted towards horizontal,
indicating a larger spatial difference, i.e., Vij (or Ṽij).

A. Detection and Localization with one attacker

We first simulate the performance of the proposed schemes
when the network is under attack from |Vs| = 1 malicious
node. As the network topology is symmetrical, without loss
of generality we set node 1 to be the attacker. Notice that there
are 4 nodes located directly next to the attacker.

1) Temporal Difference Method: We present the receiver
operating characteristic (ROC) curves for the temporal differ-
ence method in Figure 6. First, we consider the performance of
the neighborhood detection task in Figure 6 (Left). As we only
focus on the case when the evaluating node i is located next
to the attacker, the ROC curves also correspond to the attacker
detection task. The false alarm and detection probabilities are
evaluated by taking an average of the probabilities of all the
four neighbors of the attacker. From the figure, we notice
that the detection performance improve as K increases, as
predicted in Theorem 1. Accruing statistics from K ≈ 100
instances seems to provide a reliable detection.

For the localization task in Figure 6 (Right), we assume
that the neighborhood detection test was completed without
errors (by an ‘Oracle’). Similar to the attacker detection, the
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Fig. 6: Temporal method detector performance: (Left) ROCs for attacker
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and therefore omitted. (Right) ROCs for localization of attacker. Dotted lines
show the theoretical bounds in (31) & (32). Markers show the bounds obtained
by applying Gaussian approximation.

Fig. 7: Temporal method: Probability of correct localization of all nodes for
K = 25

performance of the localization task improves with K. More-
over, with the same K, the performance of the detection task
is worse than that of the localization task. This corroborates
our observations in Theorem 1 and Lemma 1.

We also compare the theoretical bounds with the actual
performance for the two tasks. Here, the performance bounds
predicted for the Gaussian case are plotted. We observe that
the bounds (27) & (28) are generally loose in the case of
attacker detection, yet (31) & (32) nearly match the actual
performance.

We then investigate the optimal thresholds εI , δI for the
temporal difference method. Fixing at K = 25, Figure 7 shows
the probability when all neighbors are classified correctly.
Since all neighboring nodes have to be classified correctly, the
nodes next to the attacker have to both detect and localize the
attackers, as well as classifying the normal nodes. Nodes that
are not next to an attacker, i.e. with only normal neighbors,
must not detect a neighborhood attack. We find that for
the thresholds (δI , εI) chosen as (0.6,0.25), we classify all
neighbors correctly with a probability of 63%.

2) Spatial Difference Method: For the spatial difference
method, the ROC curves of the attacker detection are shown in

Figure 8. Contrary to the temporal difference case, the spatial
difference method can also detect an attack if a node is more
than one hop away from the attacker. Therefore, in addition to
performing attacker detection on nodes that are directly next
to the attacker, we also compare the detection performance
on nodes that, for our example, are two hops away from the
attacker seen in Figure 8 (Right). From the figure, the nodes
that are directly next to an attacker are clearly more sensitive
then the nodes far from an attacker.

In Figure 9, we show the ROC curves for the localization
and neighborhood detection tasks. Specifically, in the neigh-
borhood detection task we evaluate the false alarm/detection
probabilities conditioned on H1, i.e., when the attacker is
actually present in the network. Observe that we can get
the neighborhood detection to work, however it is the worst
performing test for the spatial difference method. For the
localization task in Figure 9 (Right), similar to the temporal
case, we assume that the neighborhood detection test was
completed without errors. Also in this case, the tests improve
with K in a way that is more pronounced than with the
temporal difference method, and under the same K, the
performance of the neighborhood detection task is worse than
that of the localization task. Nevertheless, the spatial method
has a drastic advantage over the temporal method in spotting
attacks, as it leverages information of the entire dynamic, while
the temporal method only uses the initial and terminal states.

We now investigate the optimal thresholds εII , δII for the
spatial difference method by studying the case with K = 25.
In Figure 10 we plot the probability when all nodes are
classified correctly, using similar settings as Figure 8. We
find that for the thresholds (δII , εII) chosen as (50,1100)
we classify all nodes correctly with a probability of 87%.
Comparing the performance of the temporal and spatial dif-
ference methods, we see that the spatial difference method
is outperforming the former. However, we notice that the
computational complexity requirement of applying the spatial
difference method is higher.

3) Non Sub-Gaussian Distribution: Next, we evaluate the
performance of the data injection attack methods when the
states’ distributions are not sub-Gaussian. In particular, we
repeat the simulations above with the attackers and normal
nodes’ states generated with a Laplacian distribution, with
unit variance and mean γ̄ = 0.5 for normal nodes, and mean
ᾱ = 0 for the attacker. The simulation results are shown in
Figure 11. As seen, the detection/localization performances
are almost identical to the cases considered with Gaussian
initialization. This shows that the proposed methods are robust
to the distribution of the nodes’ states.

4) Correlated Attackers: Finally, we consider a scenario
when the attacker’s target values are correlated across in-
stances. We assume that the attacker’s states follow an autore-
gressive model, i.e., αk+1 = 0.9γk+1 + 0.1αk with α0 = γ0;
while the other settings remain the same. Under this attack,
the detector performance is shown in Figure 12. As seen in the
figure, the two proposed method achieve similar performance
as in the case with i.i.d. attacker’s statistics.
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Fig. 10: Spatial method: Probability of correct localization of all nodes for
K = 25

B. Detection & localization of multiple attackers

We now consider the case when the network is under the
coordinated attack from multiple nodes. We consider the same
topology and parameters as before and fix K = 25 for all
experiments. The attackers share the same αk, but each of
them adds a random and independent series of noise samples.
In the experiments, we assign the first d nodes as the attackers,
i.e., we set nodes {1, ..., d} as the attackers when considering
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Fig. 11: ROCs with the Laplacian distribution via the (Top) temporal method
and (Bottom) spatial method.
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a scenario with d attackers (cf. Figure 3).
Figure 13 plots the ROC curves for the attacker detection

task with up to 7 attackers. We notice that the performance for
both methods depends on the number of attacking neighbors.
At this point we recall that in the chosen topology each
node has 4 neighbors. For the temporal method, we observe
that the detection rate is best with 2 attackers and 2 normal
neighboring nodes. For the spatial method, we notice that the
attack detection performance degrades with the amount of at-
tackers increasing in the network, but the attacker localization
performance is the best with 2 neighboring attackers and 2
normal nodes. This result makes sense as in this case, (20)
will be maximized, thus giving rise to a higher detection rate.
The performance also seems to be identical for nodes with
either 1 or 3 attacking neighbors, given the same total number
of attackers in the network. This is due to the fact that each
node is comparing with all its neighbors (21). As there are
more attackers, the value of 1

|Ni|
∑
j∈Ni x

k
j (t) becomes more

biased by the attackers themselves, which therefore become
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harder to detect.
In Figure 14, we show the ROC curves for the localization

task with up to 7 attackers. For the temporal method, the
localization performance is independent of the number of
attackers and neighboring attackers. Meanwhile, the spatial
method’s localization performance, degrades with both the
number of attackers and the number of neighboring attackers.
We speculate that this is due to the fact that in (23), when there
are more neighboring attackers, the influence of an individual
attacker becomes less pronounced. Furthermore with more
attackers in the network, more normal nodes will be affected
directly, thus the localization task becomes more difficult with
the spatial difference method. Nevertheless, the spatial method
performs the best from Figure 14. With an increasing amount
of attackers, however, the temporal difference method provides
better performance.

Lastly, we consider a scenario when the attacker nodes, i.e.,
node 1 & 2, do not share the same target value. In Figure 15,
we show the trajectories of the nodes’ states of the consensus
algorithm when we set [αk]1 = 1 and [αk]2 = 0. We observe
that the two attackers settles at their individual target value
(in black and blue), while the states of normal nodes fluctuate
between 0 and 1. The detection and localization performances
of the proposed methods are shown in Figure 16. From the
top figure, we observe the temporal metric is able to the attack
with worsened performance than in the previous sections. On
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Fig. 15: Trajectories of nodes’ states with two non-agreeing attackers in the
network. The attackers’ states are in black and blue
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Fig. 16: ROCs with non agreeing attackers via the (Top) temporal method;
(Bottom) spatial method.

the other hand, from the bottom figure, the spatial metric
achieves an almost perfect performance. The reason for that
is that the network is never converging, thus the spatial metric
diverges, i.e., Xk

im → ∞, whenever the attackers are present
(cf. compare Figure 15 with Figure 4).

C. Decentralized Disconnection
In Figure 17, we show the performance of decentralized

disconnection method discussed in Section III using the spatial
metric, for the same network topology as in the previous
experiments with one attacker and setting K = 25.

We show the expected number of residual attackers in the
network in Figure 17 (Left), from which we observe that after
4 iterations of the detection and disconnection algorithm we
remove the attacker 100% of the times.

In Figure 17 (Middle) we show the probability that normal
nodes get disconnected. Because we set a low probability
of false alarm we rarely have disconnections and rarely they
are in excess of the attacker. This explains the fact that the
average algebraic connectivity, shown in Figure 17 (Right),
hardly changes over the iterations.

D. Sequential change detection
We consider extending the attacker detection method to a

sequential change detection. The idea is compute the log-
likelihood of each sample (of temporal or spatial difference



11

Iterrations
100 101 102

E
x
p

e
c
te

d
 n

u
m

b
e

r 
o

f 
re

m
a

in
in

g
 a

tt
a

c
k
e

rs

0

0.02

0.04

0.06

0.08

0.1

100 101 102

Iterrations

1

2

3

4

5

6

7

8

9

P
(D

is
c
o

n
n

e
c
te

d
 N

o
rm

a
l 
N

o
d

e
s
)

#10-4

Iterrations
100 101 102

A
lg

e
b

ra
ic

 C
o

n
n

e
c
ti
v
it
y

0.5

0.6

0.7

0.8

0.9

1

Fig. 17: (Left) Expected number of residual attackers, (Middle) probability of
disconnected nodes and (Right) average algebraic connectivity versus iteration
number.

-800 -600 -400 -200 0 200 400 600 800
Sample (k)

-6

-4

-2

0

2

4

6

8

S
co

re

Temporal Detection Score
Treshold

No Attack Attack

-800 -600 -400 -200 0 200 400 600 800
Sample (x)

-6

-4

-2

0

2

4

6

8

S
co

re

Spacial Detection Score
Treshold

No Attack Attack

Fig. 18: Trajectories of the log likelihood using (Left) temporal difference
metric and (Right) spatial difference metric.

metrics) assuming a change in mean and variance of a
Gaussian distribution (approximating the true distribution) and
decide if a significant change in distribution has occurred due
to attacks.

Let µ̄k, (σ̄k)2 be estimated mean and variance respectively
in the absence of an attack, adaptively updated at every k as
follows

µ̄k+1 = 0.98µ̄k + 0.02zki , (40)(
σ̄k+1

)2
= 0.98

(
σ̄k
)2

+ 0.02 · (zki − µ̄k)2. (41)

where zki is the temporal or spatial’s metrics output. Moreover,
at instance k, we compute the sample mean µ̂k and variance
(σ̂k)2 from a window of 25 samples of zki into the future.

If the network is under attack, we expect to see a significant
difference between the two pairs of sample mean/variance. As-
suming a Gaussian prior, we can compute the log-likelihood:

Lk = log(σ̂k/σ̄k)− ((zki − µ̂k)2 − (zki − µ̄k)2)/2 (42)

We further smooth out the log-likelihood using an AR model
with a forgetting factor of 0.1. Figure 18 shows an example
trajectory of Lk with the temporal and spatial difference
metric, where the attack began at sample 0 and the first 200
samples are used to initialize the estimators. Both detectors
show a peak after the attack started, and fall under the
threshold after the change, as the attack continue persist and
the mean/variance estimated is now tracking the high value
corresponding to the persisting attack. The classification of
the state of the network can be done by comparing the sample
mean/variance prior and after the change since the metric has
an increased mean/variance when the network is under attack.
Note that the spatial metric’s peak is higher than the temporal
one, indicating once again that the spatial method has better
detection performance. In Figure 19 we show the probability
that an attack/change is detected before sample k, with an
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Fig. 19: Performance of sequential change attack detection.

attack happening at sample k = 0, averaged over 600 Monte-
Carlo trials. We can see that the temporal method does not
detect all the time the starting time of the attack but provides
a reasonable low amount of false alarm. The spatial method
on the other hand is very accurate.

VI. CONCLUSION

To conclude, we have proposed two independent novel
strategies to detect and localize malicious nodes in a random-
ized consensus algorithm. Each strategy can be performed at
each individual node in a completely decentralized manner
and without any communication overhead. The performance
bounds of the algorithm are analyzed, and the simulation
results confirmed our findings.
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APPENDIX A
PROOF OF THEOREM 1

Observe the following chain for the false alarm rate:

P
(
Ĥ = Hi1 | Hi0

)
= P

( ∑
m∈Ni

|ξim − ξ̄i| ≥ δ | Hi0

)

≤ |Ni|P
(
|ξim − ξ̄i| ≥

δ

|Ni|
| Hi0

)
, for some m ∈ Ni,

(43)
where we have applied the union bound in the last inequality.
We have

ξim−ξ̄i =
1

K

K∑
k=1

(−1 +
1

|Ni|

)
γkm +

∑
j∈Ni\{m}

1

|Ni|
γkj

 .

The quantity above is a zero mean r.v. with sub-Gaussian
parameter σ2

γ(|Ni| − 1)/(K|Ni|). Applying the Hoeffding’s
inequality [22] to the last term of (43) yields the desired result.

For the miss detection rate, we have

P
(
Ĥ = Hi0 | Hi1

)
= P

( ∑
m∈Ni

|ξim − ξ̄i| ≤ δ | Hi1

)
≤ P

(
|ξim − ξ̄i| ≤ δ | Hi1

)
∀ m ∈ Ni.

(44)



12

Observe that

ξij =

{
(1/K)

∑K
k=1(mk

j (0)), j ∈ Vs,
(1/K)

∑K
k=1(αk − γkj ), j /∈ Vs.

and

ξ̄i =
1

K|Ni|

K∑
k=1

 ∑
j∈Vs∩Ni

mk
j (0) +

∑
j∈Vr∩Ni

(αk − γkj )


We observe that ξim − ξ̄i is a r.v. with mean µi and sub-
Gaussian parameter σ2

i /K for m ∈ Vs. Let us write ξim−ξ̄i =
ξ̃im + µi. We can upper bound the last term in (44) as:

P
(
|ξim − ξ̄i| ≤ δ | Hi1

)
≤ P

(
ξ̃im ≥ −δ + |µi| | Hi1

)
(45)

Consequently, the desired inequality can be obtained by ap-
plying Hoefding’s inequality.

APPENDIX B
PROOF OF LEMMA 1

Under Hij1 , we have ξij = (1/K)
∑K
k=1m

k
j (0), where

mk
j (0) are zero mean, independent r.v.s with sub-Gaussian

parameter σ2
M . Under Hij0 , we have

ξij =
1

K

K∑
k=1

(
αk − γkj

)
, (46)

note that the terms inside the summation have mean ᾱ − γ̄
and are independent with sub-Gaussian parameter σ2

α + σ2
γ .

Similar to Theorem 1, the desired inequalities can be obtained
by applying Hoeffding’s inequality.

APPENDIX C
PROOF OF THEOREM 2

For the ease of presentation, we ignore the index i through-
out this proof. Throughout this section, we use · to denotes
the inner product between matrices, i.e., A·B := Tr(A>B).

A. First-order statistics
Under H0, it is obvious that:

E[Xk
m] = E

∑
t∈Tk

xkm(t)− 1

|Ni|
∑
j∈Ni

xkj (t)

 = 0. (47)

Under H1, we observe the following chain:

ηim = E[Xk
m] = E

∑
t∈Tk

xkm(t)− 1

|Ni|
∑
j∈Ni

xkj (t)


= (em −

1

|Ni|
∑
j∈Ni

ej)
>
∑
t∈Tk

W
t
[
ᾱ1
γ̄1

]
= (em −

1

|Ni|
∑
j∈Ni

ej)
>
∑
t∈Tk

W
t
(
ᾱ1 + (γ̄ − ᾱ)

[
0
1

])
= (em −

1

|Ni|
∑
j∈Ni

ej)
>
[

0
(γ̄ − ᾱ)

∑
t∈TkD

t1

]
.

where the last equality is due to the stochasticity of W and
the fact that (em − 1

|Ni|
∑
j∈Ni ej)

>1 = 0.

B. Second-order statistics

Define the following quantities

Ak
t1,t2

:=
(
xk(t1)− E[xk(t1)]

) (
xk(t2)− E[xk(t2)]

)>
.

(48)

Fn,m := (en −
1

|Ni|
∑
j∈Ni

ej)(em −
1

|Ni|
∑
j∈Ni

ej)
>. (49)

Note that the variance of Xk
m can be written as E[(Xk

m −
E[Xk

m])2] = Fm,m ·(∑t1,t2
E[Ak

t1,t2 ]).

1) Under hypothesis H0 — In this case, we observe that
E[xk(t)] = γ̄1. Using W (t)1 = 1 for all t, we have:

xk(t)− E[xk(t)] = W (t) · · ·W (1)(γk − γ̄1),

where (γk − γ̄1) ∼ N (0, σ2
γI) is independent of

W (t), ...,W (1). We can evaluate:

E[Ak
t1,t2 ] = σ2

γE[W (t1) · · ·W (1)W (1)> · · ·W (t2)>]

= σ2
γW

max{t1,t2}
,

(50)

where the first equality is due to E
[
W (t)W>(t)

]
=

E
[
W 2(t)

]
= E [W (t)] = W , since W (t) is a projection

matrix under the current hypothesis. The variance of Xk
m under

H0 can be evaluated as:

E[(Xk
m − E[Xk

m])2|H0] = Fm,m· (∑
t1,t2

E[Ak
t1,t2 ]

)
= Fm,m·(∑

t

E[Ak
t,t] + 2

∑
t2,t1>t2

E[Ak
t1,t2 ]

)
= σ2

γFm,m·(∑
t

W
t

+ 2
∑

t2,t1>t2

W
t1
)

= σ2
γFm,m·(∑

t

(2t− 1)
(
11> +

n∑
i=2

λti(W )viv
>
i

))
,

(51)

where λi(W ) is the ith largest eigenvalue of W and vi is the
associated eigenvector. To show that the variance is bounded,
we observe the following fact: (i) Fm,m ·11> = 0 for all m;
(ii) λi(W ) < 1 for all i ≥ 2 and thus the associated sum is
bounded by

∞∑
t=1

(2t− 1)λti(W ) =
3λi(W )− 1

(1− λi(W ))2
<∞. (52)

We conclude that under H0, E[(Xk
m − E[Xk

m])2] < ∞ for
all m and it can be analytically calculated by (51) & (52).
Furthermore, the variance grows as

τ2
im = Cτim ·

(
σ2
γ

λ2(W )

(1− λ2(W ))2

)
. (53)

2) Under hypothesis H1 — Define x̂k(t) = xk(t)−E[xk(t)]
and its partition as x̂k(t) = (ŝk(t)>, r̂k(t)>)> such that
ŝk(t), r̂k(t) correspond to the malicious nodes and normal
nodes, respectively. Our goal is to evaluate:

E[Ak
t1,t2 ] =

[
E[ŝk(t1)ŝk(t2)>] E[ŝk(t1)r̂k(t2)>]
E[r̂k(t1)ŝk(t2)>] E[r̂k(t1)r̂k(t2)>]

]
. (54)
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In Appendix G, we show:

Lemma 4 Under H1 and the same settings as in Proposi-
tion 2. The expectation of Ak

t1,t2 is:

E[Ak
t1,t2 ] = σ2

α11> + Θ(σ2
m min{t1, t2} · λ̃max{t1,t2})

+ Θ((σ2
γ + σ2

α)λ̃max{t1,t2})−Ξt1,t2 ,
(55)

where λ̃ = max{λ̂2, λ1(D)} < 1 and

Ξt1,t2 = σ2
α

(
0 11>(Dt2)>

Dt111> Dt111> + 11>(Dt2)>

)
. (56)

Using the fact that Fm,m ·11> = 0 and Fm,m ·Ξt1,t2 =
0, the variance of Xk

m depends on the latter two terms in
(55). The second last term with Θ(min{t1, t2}λ̃max{t1,t2}) is
bounded as∑

t1,t2

min{t1, t2}λ̃max{t1,t2}

=
∑
t

tλ̃t + 2
∑
t1>t2

t2λ̃
t1 =

λ̃

(1− λ̃)2
+ 2

∑
t

∑
τ

tλ̃t+τ

=
λ̃

(1− λ̃)2
+ 2

∑
t

tλ̃t

1− λ̃
=
λ̃(3− λ̃)

(1− λ̃)3
<∞.

In particular, the variance of Xk
m has the following order

β2
im = Cβim ·

(
(σ2
γ + σ2

α)
3λ̃− 1

(1− λ̃)2
+ σ2

m

3λ̃− λ̃2

(1− λ̃)3

)
. (57)

This concludes the proof. It is worth mentioning that Sij2
can be similarly expressed as a Chi-square r.v. with bounded
variance.

APPENDIX D
PROOF OF THEOREM 3

To facilitate our analysis, we define X̄im :=
K−1

∑K
k=1X

k
im as the averaged statistics over the

K observed instances of consensus. Moreover, let
X̄i := (X̄im)m∈Ni be an |Ni|-dimensional random
vector. Note that Si1 = |Ni|−1‖X̄i‖22, whose concentration
inequalities are derived below.
1) Under H0 — In this case, we observe that:

X̄i ∼ N (0,Σi0), where diag(Σi0) = (τ2
im/K)m∈Ni . (58)

The K−1 scaling in the diagonal of Σi0 is due to the fact that
Xk
im are independent across k. In fact, as Σi0 must be positive

semidefinite, there is also a K−1 scaling for every element in
the matrix Σi0. Let Σi0 = QDiag(τ̄ 2

i /K)Q> with2 τ̄ 2
i :=

(τ̄2
im)m∈Ni , we can express Si1 as:

Si1 = |Ni|−1
∑
m∈Ni

τ̄2
im

K
(X̃im)2, (59)

where X̃im ∼ N (0, 1) are independent across m ∈ Ni. We
have
P (Si1 ≥ δII |H0) = P

(∑
m∈Ni τ̄

2
imX̃

2
im ≥ K|Ni|δII

)
= P

(∑
m∈Ni

τ̄2
imX̃

2
im ≥ ‖τ̄ 2

i ‖1 − 2‖τ̄ 2
i ‖2
√
t? + 2‖τ̄ 2

i ‖∞t?
)

2We remark that τ̄2im are at the same order of τ2im.

The last term can be bounded by exp(−t?) using Proposition
1.1 in [21], which is due to Laurent and Massart [23]. Hence,
we have:

√
t? =

‖τ̄ 2
i ‖2

2‖τ̄ 2
i ‖∞

(
1 +

√
2‖τ̄ 2

i ‖∞
‖τ̄ 2
i ‖22

(K|Ni|δII − ‖τ̄ 2
i ‖1) + 1

)
(60)

We consider the case when K|Ni|δII ≥ ‖τ̄ 2
i ‖1. If K → ∞,

then t? ≈ K|Ni|δII/(2‖τ̄ 2
i ‖∞). Finally:

P (Si1 ≥ δII |H0) ≤ exp(−K|Ni|δII/(2‖τ̄ 2
i ‖∞)). (61)

2) Under H1 — In this case, we observe that:

X̄i ∼ N (ηi,Σi1), where diag(Σi1) =

(
β2
im

K

)
,m ∈ Ni,

(62)
where we obtained a scaling of K−1 using the independence
of Xk

im across k. Let Σi1 = QDiag(β̄2
i /K)Q> with β̄2

i :=

(β̄2
im)
|Ni|
m=1, X̃i ∼ N (0, I) be an isotropic Gaussian vector

with elements X̃i := (X̃im)
|Ni|
m=1 and η̄i = Q>ηi, we observe

the following chain:

Si1 = |Ni|−1‖Diag
(
β̄i/
√
K
)
X̃i + η̄i‖22

= |Ni|−1

|Ni|∑
m=1

(
β̄im√
K
X̃im + η̄im

)2 (63)

Let Ni1 be the rank of Σi1 such that β̄im = 0 for all
m ≥ Ni1 + 1. Observe that Si1 can now be regarded as a sum
of Ni1 independent random variables. Recalling the generic
Chernoff’s bound which states that for independent random
variables X1, ..., Xn, it follows:

P (X1 + . . .+Xn ≤ a) ≤ eat
n∏
i=1

E
[
e−tXi

]
. (64)

Moreover, we observe that for β̄2
im > 0 and all t < 1/2:

E
[
e
t(X̃im+

√
K

β̄im
η̄im)

]
= (1− 2t)−

1
2 exp

(
Kη̄2

imt

(1− 2t)β̄2
im

)
.

Plugging the above into (64), we can upper bound P (Si1 ≤
δII |H1) by:

exp

(
δt̃−

Ni1∑
m=1

η̄2
imt̃

1 + 2β̄2
imt̃/K

)
Ni1∏
m=1

(1 + 2β̄2
imt̃/K)−

1
2 ,

(65)
for any t̃ > 0 and we have set δ = |Ni|δII −

∑|Ni|
m=Ni1

η̄2
im.

In particular, setting t = K/2β̄2
imin yields:

P (Si1 ≤ δII |H1) ≤

exp

(
−K max

{
0,−δ +

Ni1∑
m=1

η̄2
im

1 + β̄2
im/β̄

2
imin

})
.

(66)

APPENDIX E
PROOF OF LEMMA 2

The test statistics Sij2 can be written as

Sij2 = (η̃ij + X̃ij)
2,
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where X̃ij is a zero-mean Gaussian r.v. with variance bounded
by β̃2

ij/K. The false alarm and miss detection probability can
be bounded by evaluating:

P ijlf = P (Sij2 ≥ εII |H
ij
0 ), 1− P ijld = P (Sij2 ≤ εII |H

ij
1 ).

The desirable bounds can be obtained straightforwardly using
the definition of the Q-function.

APPENDIX F
PROOF OF LEMMA 3

Our goal is to bound the following probability:

P
(
Ĥ = Hi1 | Hi1

)
= P

( ∑
m∈Ni

|ξim − ξ̄i| ≥ δI | Hi1
)

(67)

Under Hi1, each of ξim − ξ̄i is an r.v. with mean µi and sub-
Gaussian parameter of σ2

i /K. Similar to Appendix A, we can
write ξim − ξ̄i = ξ̃im + µi. Moreover, using the inequality∑
m∈Ni |ξim − ξ̄i| ≤

∑
m∈Ni |ξim| + |Ni||µi|, we obtain the

upper bound:

P
(
Ĥ = Hi1 | Hi1

)
≤ P

( ∑
m∈Ni

|ξim| ≥ δI − |Ni||µi|
)

≤ |Ni| · P
(
|ξim| ≥ |Ni|−1δI − |µi|

)
≤ 2|Ni| · exp

(
−K (max{0, |Ni|−1δI − |µi|})2

2σ2
i

)
,

(68)

where the last inequality is due to Chernoff’s inequality. This
concludes our proof.

APPENDIX G
PROOF OF LEMMA 4

Recall that
ŝk(t) = zkα1 +mk(t),

where zkα := αk − ᾱ ∼ N (0, σ2
α). Denote Φ(t, s) =

D(t)D(t− 1)...D(s) and zkγ := γk − γ̄1, we can write

r̂k(t) =

t−1∑
s=0

Φ(t−1, s+1)B(s)(zkα1+mk(s))+Φ(t−1, 0)zkγ .

The top-left block in (54) can be evaluated as:

E[ŝk(t1)ŝk(t2)>] = σ2
α11> + δ(t1 − t2)(λ̂t1σm)2I, (69)

Then, the top-right and bottom-left blocks are decomposed as:

E[r̂k(t1)ŝk(t2)>] = E[zkαr̂
k(t1)1>] + E[r̂k(t1)mk(t2)>].

Using the fact B(s)1 = (I −D(s))1, we note that∑t1−1
s=0 Φ(t1 − 1, s+ 1)B(s)1

=
∑t1−1
s=0 (Φ(t1 − 1, s+ 1)−Φ(t1 − 1, s))1

= 1−Φ(t1 − 1, 0)1.

(70)

As zkα, z
k
γ ,m

k(t) are mutually independent, taking the expec-
tation gives

E[zkαr̂
k(t1)1>] = σ2

α(I −Dt1)11>, (71)

++

Fig. 20: Linear System for r̂(t).

Moreover, if t1 ≥ t2,

E[r̂k(t1)mk(t2)>]

= (λ̂t2σm)2u(t1 − t2 − 1)E[Φ(t1 − 1, t2 + 1)B(t2)]

= (λ̂t2σm)2u(t1 − t2 − 1)Dt1−t2−1B,

(72)

where u(t) is the unit step function such that u(t) = 1 for all
t ≥ 0 and is zero otherwise. In general, the term above can
be bounded by O(σ2

mλ1(D)max{t1,t2}). As such,

E[r̂k(t1)ŝk(t2)>] = σ2
α11> − σ2

αD
t111>

+O(σ2
mλ1(D)max{t1,t2})

(73)

Finally, we compute the bottom-right block
E[r̂k(t1)r̂k(t2)>], i.e., the covariance of r̂(t). Observe
that r̂(t) can be viewed as the output of a linear system as
shown in Figure 20, with the input:

δ(t)zkγ + zkαB(t)1 +B(t)mk(t) (74)

Importantly, r̂k(t) can be expressed as the superposition of
the responses to the three input signals above. For t ≥ 1:

r̂k(t) = Φ(t− 1, 0)zkγ︸ ︷︷ ︸
r̂k1 (t)

+ zkα

t−1∑
s=0

Φ(t− 1, s+ 1)B(s)1︸ ︷︷ ︸
r̂k2 (t)

+

t−1∑
s=0

Φ(t− 1, s+ 1)B(s)mk(s)︸ ︷︷ ︸
r̂k3 (t)

,

(75)

and r̂k(0) = 0. The output signals r̂k1 (t), r̂k2 (t), r̂k3 (t) corre-
spond to the input signal δ(t)zkγ , zkαB(t)1 and B(t)mk(t),
respectively. It is obvious that r̂k1 (t), r̂k2 (t), r̂k3 (t) are mutually
independent. As such, the covariance can be decomposed as

E[r̂k(t1)r̂k(t2)>] (76)

=E[r̂k1 (t1)r̂k1 (t2)>] + E[r̂k2 (t1)r̂k2 (t2)>] + E[r̂k3 (t1)r̂k3 (t2)>].

Consider the following chain for E[r̂k1 (t1)(r̂k1 (t2))>]:

vec
(
E[r̂k1 (t1)(r̂k1 (t2))>]

)
(77)

= σ2
γ (I ⊗D)

t1−t2 (E [D(t)⊗D(t)])
t2 vec (I)

= Θ(σ2
γλ1(D)max{t1,t2}).

where we have used the identity vec(AXB) =
(B> ⊗ A)vec(X) recursively and the fact that
λ1 (E [D(t)⊗D(t)]) ≤ λ1(I ⊗D) = λ1(D) < 1.

Next, using (70), we have

r̂k2 (t) = zkα(1−Φ(t− 1, 0)1). (78)
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Therefore,

E[r̂k2 (t1)r̂k2 (t2)>]

= σ2
αE[(1−Φ(t1 − 1, 0)1)(1−Φ(t2 − 1, 0)1)>]

= σ2
α

(
11> −Dt111> − 1(Dt21)>

+ E[Φ(t1 − 1, 0)11>Φ(t2 − 1, 0)>]
) (79)

Similar to (77), the last term above can be bounded as

vec
(
E[Φ(t1 − 1, 0)11>Φ(t2 − 1, 0)>]

)
= (I ⊗D)t1−t2 (E [D(t)⊗D(t)])

t2 vec
(
11>

)
= Θ(λ1(D)max{t1,t2}).

(80)

We finally consider the covariance of output due to mk(t):

E[r̂k3 (t1 + 1)(r̂k3 (t2 + 1))>] =

E

[
t2∑
s=0

(λ̂sσm)2Φ(t1, s+ 1)B(s)B>(s)Φ>(t2, s+ 1)

]
,

where we have used the fact that mk(s) is independent of
mk(s′) for s 6= s′. Again, vectorizing the term above yields

t2−1∑
s=0

(λ̂sσm)2 (I ⊗D)
t1−t2 (E [D(t)⊗D(t)])

t2−s−1
b̃

= Θ(σ2
m min{t1, t2} ·max{λ̂2, λ1(D)}max{t1,t2}) (81)

where b̃ = vec(E[B(s) ⊗B(s)]). Combining (77), (79) and
(81) give:

E[r̂k(t1)r̂k(t2)>] = σ2
α(11> −Dt111> − 1(Dt21)>)

+ Θ((σ2
α + σ2

γ)λ1(D)max{t1,t2})

+ Θ(σ2
m min{t1, t2} ·max{λ̂2, λ1(D)}max{t1,t2}).
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