
Decentralized Voltage Stability Monitoring and Control in the Smart
Grid using Distributed Computing Architecture

H. Lee
EECS

Wash. State University
hyojong.lee@wsu.edu

S. Niddodi
EECS

Wash. State University
shwetha.niddodi@wsu.edu

A. Srivastava
EECS

Wash. State University
asrivast@eecs.wsu.edu

D. Bakken
EECS

Wash. State University
bakken@wsu.edu

Abstract—To manage the smart electric grid of the future,
fundamental changes are required in the system operational
paradigm. Availability of high-resolution data at faster speed and
advanced computational advancements provide opportunities to
bring this fundamental change. Monitoring and control algo-
rithms need to be evolved to match the transition of centralized
generation to distributed generation. Intermittency of renewable
generation and push towards real time control requires faster
control actions, which is possible with decentralized power grid
applications. With integration of distributed energy resources
(DERs), the stability assessment application need to handle a
large number of data points in real time. This requires massive
computing resources, and requirements will increase for possible
real time control action. Decentralized applications need to be
coordinated and manged with existing centralized applications.
This paper addresses the development of a fault-tolerant dis-
tributed computing architecture (DCBlocks) for implementing
a decentralized voltage stability monitoring and control appli-
cation. Results for IEEE 30 bus system have been provided
to validate the developed architecture. Distributed computing
algorithms are implemented using open source platform Akka
Java and DeterLab test bed.

I. INTRODUCTION
The electric grid is going through a major upgrade and

more changes are expected in future to adopt with high
penetration of renewable energy to meet the energy security
and sustainability requirements [1] [2]. With replacement of
high inertia dispatchable centralized generation by low inertia
intermittent renewable generation with limited reactive power,
power grid will be more stressed specially for frequency
control, dynamic response, and voltage stability.

To manage the electric grid of the future, fundamental
changes are required for the system operation. Advancement
in sensors technology and computational advancement provide
opportunities to bring this fundamental change. Much more
sensor data is available today then even just a few years ago
from sources such as (Intelligent Electronic Devices (IEDs),
Phasor Measurement Units (PMUs), and distribution automa-
tion. Monitoring and control algorithms need to be evolved
and be decentralized to match the transition of centralized
generation to distributed generation as well as to handle large
amount of data in a small amount of time.

Traditionally, power algorithms have been single-process
programs hosted almost exclusively in control centers. We
will call these algorithms centralized, one noteable exception
has been traditional protection schemes and remedial action
scheme (RASs). The more sophisticated distributed edge com-
putations solve equations so the threshold for the control action

are dynamically calculated based on present conditions. A
generic reason for many of these being decentralized is that,
even if they are not quite optimal, local decisions can be made
much more quickly, and also avoid a centralized algorithm,
which can be a communications bottleneck and a single point
of failure or attack.

With increasing number of renewable penetration generally
located far from load centers and limited reactive power, volt-
age stability problem can happen quickly with limit induced
bifurcation. Additionally, power electronics control allows
operating near the power system margin. Control actions
should be taken quickly and probably autonomously. The
centralized voltage stability applications are broadly studied by
researchers. The Decision Tree (DT) based method is studied
in [3], the DT is classified and trained by off-line simulation
for all possible cases. The continuation power flow calculates
PV curve and a point of collapse by predictor and corrector in
[4], [5]. Modal based method have been used to find Point Of
Collapse (POC) point using Jacobian matrix. The Jacobian
matrix becomes singular matrix at the POC in [6]. Other
centralized voltage stability methods are proposed in [7]–[12].
The centralized voltage stability may not work well in time
with large number of variables to solve, high intermittency
and for limit-induced bifurcation. Voltage stability problem
is inherently local and can be solved locally using available
reactive power resources in neighborhood dynamically.

This provides a good fit and requirement to develop dis-
tributed computing architecture (DCBlocks) for voltage sta-
bility. Additionally distributed application allows redundancy
and fault-tolerant computing, if designed well.

Contribution of this paper is to provide a distributed comput-
ing architecture tailored for implementation of a decentralized
voltage stability monitoring and control application. This paper
develops decentralized voltage stability algorithm using the
concepts from existing centralized and local synchrophasor
based voltage stability monitoring and control but modifies
it to fit the need of distributed implementation. Paper also
provides a test case study using IEEE 30 bus system for
validation of developed distributed computing architecture for
voltage stability using Akka and Deterlab.

II. DECENTRIALIZED VOLTAGE STABILITY ALGORITHMS
(DVS)

The DVS can be used as a secondary control running
in several seconds to complement tertiary voltage stability

Author copy. Accepted for publication. Do not redistribute.



Fig. 1: Power system network with group of nodes

optimal control running at control center in several minutes.
There are number of different decentralized voltage moni-
toring and control algorithms proposed by researchers. The
decentralized voltage regulator using fuzzy logic with graph
partitioning method and bus voltage sensitivity is proposed in
[13], [14]. An optimal coordinated voltage controller using a
pseudogradient evolutionary programming (PGEP) technique
is proposed in [15]. Most of these work address voltage moni-
toring and not the voltage stability monitoring in decentralized
and coordinated manner. The main challenges of DVS are
initial group formation and coordinating control action among
groups.

Consider a power system network as shown in Figure
1. It consists of a network of substations, which can be
grouped together using a technique developed in this paper.
Grouping technique is based on the electrical distance, voltage
to reactive power sensitivity and reactive power availability.
The substations (hereafter referred to as nodes) have the
computing devices able to compute voltage stability indices
using reduced network model equivalent and synchrophasor
measurements from phasor measurement units (PMU) [16],
[17]. It is also assumed that these are capable of computing
distributed state estimation (DSE) before performing voltage
stability assessment. DSE is out of scope of this paper due to
limited space and a good set of measurement data has been
assumed in this work.

When a voltage stability problem at a particular bus is
encountered in a reduced power network, all the substations
within that group need to communicate with each other to
provide the reactive power needed to improve the voltage
stability using control actions discussed in this work.

Once the group is established, these nodes can again co-
ordinate with each other to select one distinguished node
having the maximum computational resources to perform
voltage stability assessment. Lead computational node can also
perform computation for needed control actions to improve the
voltage stability.

A. Group Formation Method for DVS

Before selecting the leader of each group, the distributed
algorithm needs to perform initial grouping from large power

Fig. 2: Flowchart for Initializing Group Formation

Fig. 3: Tie line inclusion in groups

system to multiple group of small power system nodes and
computational resources. Following minimum requirements
are considered to form group of nodes:

1) At least one generator
2) At least one transmission line
3) At least one load
4) At least one reactive power source
5) All components are relatively close measured by electri-

cal distance and geographical distance

To determine initial group, this method requires entire
power system information for computing Admittance matrix
as shown in Figure 2.

The tie line impedance among groups is counted as half of
the original impedance of the line in order to replace it with
generation or load based on power flow direction. The virtual
bus is connected to the boundary bus with half of tie line
impedance. The virtual bus are considered as generator bus or
load bus from the connected boundary substation as shown in
Figure 3. The line flow is solved using PMUs data as shown
in Figure 3.

The line flow is calculated as following:

Sij = (Vi × I∗i ) Power leaving fromBus i

Sji = (Vj × I∗j ) Power reaching toBus j

where Vi, Vj , Ii, and Ij are bus voltage at Bus i and j
and line current at Bus i and j respectively. The tie lines are
replaced by following: a) If real part of Sij has negative value,
then the line is replaced as generator, b) If real part of Sij has
positive value, then the line is replaced as load .



Fig. 4: Example of admittance for YGL

B. DVS Monitoring Algorithm

The DVS monitoring algorithm estimates voltage stability
index (VSI) for each load bus using Thevenin’s equivalent
approach with the active and reactive power limit considera-
tion. To perform Thevenin method, Vth and Zth needs to be
calculated by limited system information in each group. Once
the system is grouped by initial grouping method, the buses
are represented as generator bus, boundary bus, and load bus.
The network topology can be represented as following:YGL YGT YGG

YTL YTT YTG
YLL YLT YLG

 (1)

YGL are a set of admittance values between Generator and
Load connections as figure 4.

Similarly, YGT , YTL, YTT ,YTG, and YLL are Generator to
Tie line, Tie line to Load, Tie line to Tie line, Tie line to
Generator, and load to load respectively.

-Load, Load-Tie, Tie-Tie, and Tie-Load respectively. Using
reformed admittance matrix, Thevenin’s equivalent parameters
are calculated as following: [18]

vthj
=

M∑
m=1

HLGjm
vGm +

N∑
n=1,i6=j

ZLLji
(
−SLi
vLi

)∗ (2)

Zth = ZLL = (YLL − YLTY
−1
TT YTL)−1 (3)

where, N is number of generation bus, M is number of load
bus, Zth is Thevenin impedance for each load bus, Vthj

is
Thevenin voltage source for jth load bus.

Smaxj
= Vthj

× (
Vthj

Zthj

)∗ (4)

Using calculated maximum apparent power, V SIP , V SIQ,
and V SIS is calculated as following:

V SIS = 1 − Smaxeachload
− SLeachload

Smaxeachload

(5)

V SIP = 1 − Pmaxeachload
− PLeachload

Pmaxeachload

(6)

V SIQ = 1 − Qmaxeachload
−QLeachload

Qmaxeachload

(7)

V SI = max(V SIS , V SIP , V SIQ) (8)

where, Smaxeachload
is maximum power transferred at each

load, SLeachload
is current load at each load.

Similarly, Pmaxeachload
and Qmaxeachload

correspond to the
real and reactive component of maximum power transferred at
each load. Also, PLeachload

and QLeachload
are real and reactive

Fig. 5: DVS control action scheme

Fig. 6: Example system for priority index

component values of current load at each bus. The maximum
VSI is used for Distributed Voltage Stability Control (DVSc)
algorithm to control reactive sources based on Priority Index
(PI) as discussed in next section.

C. DVS Control Algorithm

Our DVS approach is based on the assumption that the
DVSc algorithm can be activated under emergency stage
within few seconds. The base VSI is predefined by benchmark-
ing with continuous Power flow (CPF) result. The reactive
power is redistributed using the developed algorithm and
using priority index (PI) as shown in Figure 5. The the
DVSc algorithm considers the electrical distance and network
sensitivity as shown in Figure 6.

The procedure of finding PI is shown as following.

1) The Y matrix is used to compute priority index.
2) Top priority is given to reactive power source at the bus

that has voltage stability problem (e.g. load bus 3)
3) Next set of priorities is given to reactive power sources

based on the ascending ranking of electrical distance to
the problem load bus for directly connected lines.
(As shown in Figure 7, highlighted second row of Y
matrix.)

4) Next set of priorities is given based on ascending rank-
ing of cumulative electrical distance of reactive power
sources from the target bus (e.g. modified second row
using the target bus row)



Fig. 7: Priority of reactive power sources using PI

5) Repeat step 3 and 4 until all possible priority index is
computed as shown in Figure 7.

Once all the priority indices are computed, reactive power
required for compensating the voltage stability problem on
target bus is calculated. Part of Jacobian Matrix can be used
to calculate reactive power required as following:

∆Q

∆V
=
δQ

δV
(9)

(Qreq −QPIi) =
δQ

δV
× (Vreq − VPIi)

Qreq =
δQ

δV
× (Vreq − VPIi) +QPIi (10)

where Qreq is required reactive power to fix the voltage
stability problem, Vreq is minimum acceptable voltage, QPIi
is reactive power at target bus, VPIi is voltage at target bus,
and δQ

δV is the part of Jacobian Matrix.
The control action should be performed multiple times if the
voltage problem is not solved in one step control action. The
DVSc uses all reactive power reserve until the problem is
solved within a group. If the voltage problem is not solved,
DCBlocks will communicate with other group lead for routing
more reactive powers.

III. OVERVIEW OF DISTRIBUTED COORDINATION
COMPUTATIONAL ALGORITHMS (DCBLOCKS)

Robust implementation of Distributed Voltage Stability
(DVS) is implemented using distributed computing architec-
ture. The proposed algorithm is called DCBlocks, as it is set of
generalized distributed computing blocks, which can be easily
plugged in for different decentralized applications [19]. The
computing entities periodically coordinate with each other to
achieve a common application goal using message passing.
Building decentralized applications is non-trivial due to several
factors. Some of them are: variable network delay, variable
computational delay, messages arriving in different order at
each destination, different failure types seen at each coor-
dinating process, perturbations due to cyber security attacks
such as Distributed Computing (DC) is a field, which asks the
question “how can we best use computational resources and
computer networks in order to help distributed applications and
services” [20]. The components in the distributed systems can
be heterogeneous in terms of computer hardware, operating
system, programming language used and still interact with
each other using Middleware as needed for implementation
of decentralized voltage stability (DVS). The applications

Fig. 8: Distributed Coordination Software Stack using DCBlocks

running on different systems are not aware of their exact
physical location and ”discover” each other using some sort
of discovery service.

Some of the important distributed coordination algorithms
[21], [22] that can be utilized to enable more robust distributed
power applications are:
• Agreement [20], [23], [24]
• Leader Election [20]
• Mutual Exclusion [20], [25]
• ABCAST [26]
• Voting
• Interactive Consistency (IC) [27], [28]
• Group Membership
• Group Discovery/formation
• Supply Agreement
The figure 8 shows the DC software stack for distributed

power applications with DCBlocks between the application
logic and distributed software (DS) framework. The library of
DCBlocks is designed to implement (and simplify access to)
all the algorithms discussed above as separate implementation
blocks.

A. Distributed Software Platform

The underlying distributed software platform handles the
actual communication between the processes in the distributed
network with supported features like atomicity (all processes
receive messages or none do) and message ordering. Some
distributed software platforms also provide other features like
group management and fault tolerance support. The DCBlocks
library uses one such open source software platform called
Akka Java [29]. The Akka Java toolkit uses actor model where
in each computing entity is an actor and the actors communi-
cate with each other by exchanging messages asynchronously.
Akka Java also provides group (called clusters) membership
and member life cycle management services. It has a well-
defined supervision hierarchy and failure handling strategy for
some of the failures like crash failures. The DCBlocks is built
using all of these features.

B. Design of DCBlocks

The following sections provide brief description of each
implemented block.

1) Group Management Block: It provides methods to create
group of processes (formed for specific purpose), add or re-
move members from the group, monitor the status of the group



members, detect and report member failures. It also provides
methods to dynamically reorganize groups with merge (two or
more groups are merged into one) and split operations (single
group is split into two or more groups).

2) ABCAST Block: This block provides mechanism to
multicast messages to all members in its group or to external
groups. If a process wants to send a message to all members
in the group, it needs to use ”publish” method with desired
topic to do it. All the processes in the group interested in
receiving that message has to subscribe with the same topic.
The underlying DS framework handles the actual publish-
subscribe communication

3) Leader Election Block: This block provides methods to
elect one process among them as leader for the group. Each
participating node need to propose a vote to start the election.
The leader election is executed through multiple rounds and
finally a leader for the group is elected. DCBlocks is designed
to be generic to accept any application defined decision criteria
to decide on the leader (for example, select node with least
computational work load). A Secondary leader can also be
elected which can be a fall back leader in case of failure of
primary leader.

4) Consensus or Agreement Block: This block implements
two consensus or agreement algorithms.

• Simple Consensus [20], [30] - Here processes agree on
same decision (scalar) value from list of proposed values.
Each process proposes a local value and proceeds through
subsequent rounds trying to collect all the proposed
values. After f + 1 rounds where ’f’ is number of faulty
nodes, each process decides on the same value. The algo-
rithm reaches consensus/agreement even in the presence
of failures. The decision function can be any function
like - computing the minimum, maximum, average etc of
proposed values.

• Interactive Consistency Algorithm [20], [30] - Processes
agree on a vector of values (one sent by each process).
The execution of rounds is similar to simple consensus
except that finally all processes agree upon same vector
of values.

5) Mutual Exclusion Block: This block provides means
to synchronize concurrent access of shared resources among
communicating processes. If a process wants to gain access
of a shared resource, it sends a REQUEST message and waits
for REPLY messages from ALL processes. If a process is
holding the shared resource, it does not send REPLY message
immediately and puts the REQUEST message in its request
queue. After releasing the resource, it sends REPLY message
to the process in the front of the queue. Concurrent requests
are handled by checking the request having the lowest time
stamp.

6) Failure detection and tolerance: DCBlocks can handle
failure types like crash, omission, and timing failures. The
design employs timeout mechanism to translate crash and
omission failures into timing failures using timeout. Appli-
cation logic can register with group management block to get

Fig. 9: Initial Groups

notified on member failures for example the leader, so that it
can switch to secondary leader to perform leader activities.

C. Application Logic using DCBlocks

The distributed power application logic can use any of
the DCBlocks as per their needs. The DVS application can
use DCBlocks group management block to form groups, and
leader election block to elect a leader for the group.

IV. IMPLEMENTATION OF DECENTRALIZED VOLTAGE
STABLITY USING DCBLOCKS

This section describes the implementation of our DVS algo-
rithm using DCBlocks. The power system used to implement
DVS application is IEEE 30 bus power system. It is modeled
in DETERlab [31] using 30 deter nodes where each deter
node represents a substation connected to a power system
bus. It is assumed that each substation has computing device
running the DVS software. DETERlab is a testbed consisting
of hundreds of nodes and can be used for testing experiments
in which the nodes may be configured in a variety of ways
with any of several existing operating system and with varying
network topology. It allows to inject communication network
faults, statistical delays, simulate network link failures, in-
troduce security attacks, which makes it a great platform to
perform useful and realistic experiments [3], [32].

The implementation steps of DVS using DCBlocks are:
1) On system start up, the DVS application computes the

initial grouping as explained in Section II-A.
2) Based on the initial grouping, the nodes join the group

using add member method of DCBlocks Group Manage-
ment Block. The initial grouping is shown in Figure 9.

3) The nodes start a leader election and the nodes having the
best possible computational power in the group is elected
as the leader with the help of DCBlocks Leader Election



Block. A secondary leader is also selected as back up
leader if the primary leader fails.

4) The node selected as the leader starts the leader activities
(i.e, wait for incoming power measurements from all
group members, run DVS monitoring and control algo-
rithms as required).

5) Each node starts to send its local power measurement
(bus and line information) to its group leader at regular
intervals.

6) The boundary bus and line information is obtained from
the adjacent group leaders.

7) Once all the power measurements are received from the
group members, the leader runs the DVS monitoring
algorithm as per Section II-B.

8) If the leader detects that maximum VSI is greater than
threshold (e.g. 0.7), it performs the control action using
the DVS control algorithm as per Section II-C. It might
take several control action attempts to resolve the prob-
lem.

9) If the problem cannot be resolved within the group, i.e.
reactive power is insufficient then merging of one or more
adjacent groups becomes necessary.

10) The lead node requests adjacent group leaders to send an
estimate of reactive power reserve in their groups (with
the help of DCBlocks group management block). The best
candidate group is selected and the lead node sends merge
request to that group. This is shown as dotted arrow in
Figure 9.

11) The group merges with the adjacent group with the
help of merge method of DCBlocks Group Management
Block. This is shown in Figure 10.

12) New group leader is appointed for the merged group.
13) Steps 4 to 7 is repeated.
14) After the voltage stability problem is resolved, the group

is regrouped (split) into original two groups using split
method of DCBlocks Group Management Block.

15) Steps 3 to 14 is repeated continuously.
The communication between the processes is accomplished by
DCBlocks and underlying DC software layer. It can tolerate
upto f = (n - 1)/2 faulty processes in a group where ’n’ is
the total number of processes in the group. If the leader is
detected as faulty, then a secondary back up leader can take
over to perform leader activities. The simulation results of this
application for different test cases are described in the next
section.

V. TEST CASES AND SIMULATION RESULTS

To test DVS with DCBlocks, a IEEE 30 Bus power system
is used [33]. Although DVS offers a suitable case study
for distributed modeling and simulation using physically dis-
tributed resources, simulation results here are based on re-
motely located DETER nodes and locally available computing
resources. An extra controllable shunt capacitors and Static
VAR compensator (SVC) are installed in load buses (bus
3, 7, 10, 14-22, 24, and 30) for control action. Also, the
control action is provided by changing the transformer tap,

Fig. 10: Merged Groups

Fig. 11: The IEEE 30 Bus system

re-scheduling generator, and load shedding. The IEEE 30 bus
system is grouped by DVS grouping method in section II-A
as follows:

1) Group 1 = [10, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21]
2) Group 2 = [1, 2, 3, 4, 5]
3) Group 3 = [6, 7, 8, 9, 11, 22, 23, 24, 25, 26, 27, 28, 29,

30]

The IEEE 30 bus system has two areas; load area and
generation area. By minimum requirements of grouping and
maximum limit of group members, load area is formed into
group 1 and 3. The generation area is formed as group 2.
For test system, the base VSI limit is set as 0.7 based on
benchmarking study. DVS application with DCBlocks were
simulated in DETERLab testbed. The assumption made here
is that each substation has a computational device capable of
running this integrated software. The Deter nodes are con-
nected via LAN with a network bandwidth of 500Mbps. With
this test setup, a case study of three voltage stability scenarios



(a) Group 1 (b) Group 2

(c) Group 3

Fig. 12: Voltage Stabiltiy Indices for each group for normal case

were conducted and simulation results were obtained.

A. Normal condition

In this scenario, the VSI values at each bus is well below
the threshold and the system is working in normal operating
condition. Each substation sends the bus and line information
to its group leader every 30 seconds. The leader collects the
bus and line data from all the group members, boundary bus
and line data from adjacent group leaders and runs the DVS
monitoring algorithm. The test results for the three groups for
this case is shown in Figure 12.

All VSIs stay within the threshold in this case. The control
action is not required.

B. Case I: Voltage Stability problem and resolved within the
group

In this scenario, the VSI values for bus number 30 in
group 3 becomes 0.757 exceeding the voltage stability limit
(0.7) and the leader performs the control action to resolve
the problem. In each control action attempt, reactive power
resource from the group member is applied to the affected
buses as per priority index. The reactive power reserve in
group 3 is sufficient to resolve the issue as shown in Figure
13c, the voltage stability problem at bus 30 is resolved after 2
control action attempts. The simulation results for all groups
are shown in Figure 13.

C. Case II: Voltage Stability problem and regrouping is
needed

In this scenario, the VSI values for bus number 30 in group
3 becomes high (1.044) as shown in Figure 14. The reactive
power reserve in group 3 is not sufficient to resolve the issue as
shown in Figure 14 and group 3 is merged into group 1. After
couple of control action attempts, the problem is resolved and
merged group is split into original group 1 and 3 as shown in
Figures 14d and 14e .

VI. CONCLUSIONS

Given the advancement in control algorithms and push
towards higher economics the power system is operating closer

(a) Group 1 (b) Group 2

(c) Group 3

Fig. 13: Voltage Stabiltiy Indices for each group at increased load:
case I

(a) Group 1 (b) Group 2

(c) Merging Group 1 and 3 with control actions on Group 1

(d) Group 1 (e) Group 3

Fig. 14: Voltage Stabiltiy Indices for each group at increased load:
Case 2



to limit leading to stability problems. To manage the stability
problem, the voltage stability monitoring and control needs
to be performed in real time. Distributed voltage stability
monitoring and control implemented using DCBlocks is one
possible solution to manage voltage stability problem as
secondary control option in conjunction with slow running
centralized voltage stability application. Developed algorithm
is scalable and computational time is expected to increases
with number of devices and data points.

In future, DCBlocks needs to be extended to support dy-
namic group discovery using mechanism in adhoc mobile
networks and implement newly identified supply agreement
algorithm. Decentralized voltage stability will be implemented
using physically distributed simulators in future. Additionally,
DCBlocks need to be adopted for other possible decentralized
power system applications.

ACKNOWLEDGMENT

Authors would like to thank US Department of Energy
for Award Number DE-OE0000780, RTE-France and Power
Systems Engineering Research center (PSERC) for partially
supporting this work. The views and opinions of authors
expressed herein do not necessarily state or reflect those of
the United States Government or any agency thereof.

REFERENCES

[1] S. Amin and B. Wollenberg, “Toward a smart grid: power delivery for
the 21st century,” Power and Energy Magazine, IEEE, vol. 3, no. 5, pp.
34–41, Sept 2005.

[2] E. Santacana, G. Rackliffe, L. Tang, and X. Feng, “Getting smart,” Power
and Energy Magazine, IEEE, vol. 8, no. 2, pp. 41–48, March 2010.

[3] J. Mirkovic, T. Benzel, T. Faber, R. Braden, J. Wroclawski, and
S. Schwab, “The deter project: Advancing the science of cyber security
experimentation and test,” in Technologies for Homeland Security (HST),
2010 IEEE International Conference on, Nov 2010, pp. 1–7.

[4] H. Khoshkhoo and S. Shahrtash, “On-line dynamic voltage instability
prediction based on decision tree supported by a wide-area measurement
system,” Generation, Transmission Distribution, IET, vol. 6, no. 11, pp.
1143–1152, November 2012.

[5] V. Ajjarapu and C. Christy, “The continuation power flow: a tool for
steady state voltage stability analysis,” Power Systems, IEEE Transac-
tions on, vol. 7, no. 1, pp. 416–423, Feb 1992.

[6] C. Canizares and F. Alvarado, “Point of collapse and continuation
methods for large ac/dc systems,” Power Systems, IEEE Transactions
on, vol. 8, no. 1, pp. 1–8, Feb 1993.

[7] B. Milosevic and M. Begovic, “Voltage-stability protection and control
using a wide-area network of phasor measurements,” Power Systems,
IEEE Transactions on, vol. 18, no. 1, pp. 121–127, Feb 2003.

[8] S. Ghiocel and J. Chow, “A power flow method using a new bus type
for computing steady-state voltage stability margins,” Power Systems,
IEEE Transactions on, vol. 29, no. 2, pp. 958–965, March 2014.

[9] R. Nuqui, A. Phadke, R. P. Schulz, and N. Bhatt, “Fast on-line
voltage security monitoring using synchronized phasor measurements
and decision trees,” in Power Engineering Society Winter Meeting, 2001.
IEEE, vol. 3, 2001, pp. 1347–1352 vol.3.

[10] P.-A. Lof, T. Smed, G. Andersson, and D. Hill, “Fast calculation of a
voltage stability index,” Power Systems, IEEE Transactions on, vol. 7,
no. 1, pp. 54–64, Feb 1992.

[11] J. Wen, Q. Wu, D. Turner, S. Cheng, and J. Fitch, “Optimal coordinated
voltage control for power system voltage stability,” Power Systems, IEEE
Transactions on, vol. 19, no. 2, pp. 1115–1122, May 2004.

[12] M. Glavic and T. Van Cutsem, “Wide-area detection of voltage instability
from synchronized phasor measurements. part ii: Simulation results,”
Power Systems, IEEE Transactions on, vol. 24, no. 3, pp. 1417–1425,
Aug 2009.

[13] H. Mehrjerdi, S. Lefebvre, M. Saad, and D. Asber, “A decentralized con-
trol of partitioned power networks for voltage regulation and prevention
against disturbance propagation,” Power Systems, IEEE Transactions on,
vol. 28, no. 2, pp. 1461–1469, May 2013.

[14] ——, “Coordinated control strategy considering effect of neighborhood
compensation for voltage improvement in transmission systems,” Power
Systems, IEEE Transactions on, vol. 28, no. 4, pp. 4507–4515, Nov
2013.

[15] J. Wen, Q. Wu, D. Turner, S. Cheng, and J. Fitch, “Optimal coordinated
voltage control for power system voltage stability,” Power Systems, IEEE
Transactions on, vol. 19, no. 2, pp. 1115–1122, May 2004.

[16] S. Biswas, “Synchrophasor based voltage stablity monitoring and control
of power systems,” Ph.D. dissertation, Washington State University,
2014.

[17] S. S. Biswas, C. B. Vellaithurai, and A. K. Srivastava, “Development and
real time implementation of a synchrophasor based fast voltage stability
monitoring algorithm with consideration of load models,” in Industry
Applications Society Annual Meeting, 2013 IEEE, Oct 2013, pp. 1–9.

[18] Y. Gong, N. Schulz, and A. Guzman, “Synchrophasor-based real-time
voltage stability index,” in Power Systems Conference and Exposition,
2006. PSCE ’06. 2006 IEEE PES, Oct 2006, pp. 1029–1036.

[19] P. Banerjee, S. Niddodi, H. Lee, A. Srivastava, and D. Bakken, “On
the need for robust decentralized coordination to support emerging
decentralized monitoring and control applications in electric power grid,”
in Proceedings of the Fourth Grid of the Future Symposium, CIGRE,
Chicago, USA, Oct 2015, pp. 1–9.

[20] T. K. G. Coulouris, J. Dollimore and G. Blair., “Distributed systems:
Concepts and design, 5ed.” Boston: Addison-Wesley, 2011.

[21] N. L. M.J. Fischer and M. Paterson, “Impossibility of distributed
consensus with one family faulty process,” Journal of the ACM, no.
32(2), p. 374382, April 1985.

[22] A. Avizienis, J.-C. Laprie, B. Randell, and C. Landwehr, “Basic concepts
and taxonomy of dependable and secure computing,” Dependable and
Secure Computing, IEEE Transactions on, vol. 1, no. 1, pp. 11–33, Jan
2004.

[23] L. Lamport, “Generalized consensus and paxos,” Microsoft Research,
Tech. Rep. MSR-TR-2005-33, March 2005. [Online]. Available:
http://research.microsoft.com/apps/pubs/default.aspx?id=64631

[24] D. Ongaro and J. Ousterhout, “In search of an understandable consensus
algorithm,” in Proceedings of the 2014 USENIX Conference on USENIX
Annual Technical Conference, ser. USENIX ATC’14. Berkeley, CA,
USA: USENIX Association, 2014, pp. 305–320. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2643634.2643666

[25] L. Lamport, “Time, clocks, and the ordering of events in a distributed
system,” Commun. ACM, vol. 21, no. 7, pp. 558–565, Jul. 1978.
[Online]. Available: http://doi.acm.org/10.1145/359545.359563

[26] K. Birman and T. Joseph, “Exploiting virtual synchrony in distributed
systems,” SIGOPS Oper. Syst. Rev., vol. 21, no. 5, pp. 123–138, Nov.
1987. [Online]. Available: http://doi.acm.org/10.1145/37499.37515

[27] L. Lamport, R. Shostak, and M. Pease, “The byzantine generals
problem,” ACM Trans. Program. Lang. Syst., vol. 4, no. 3, pp.
382–401, Jul. 1982. [Online]. Available: http://doi.acm.org/10.1145/
357172.357176

[28] M. Pease, R. Shostak, and L. Lamport, “Reaching agreement in the
presence of faults,” J. ACM, vol. 27, no. 2, pp. 228–234, Apr. 1980.
[Online]. Available: http://doi.acm.org/10.1145/322186.322188

[29] Akka, “Akka documentation,” 2015, [Akka 2.3.14 (current stable
release) for Scala 2.10 / 2.11 and Java 6+]. [Online]. Available:
http://akka.io/docs/

[30] M. Raynal, Fault-tolerant Agreement in Synchronous Message-passing
Systems, 1st ed. USA: Morgan and Claypool Publishers, 2010.

[31] DETERLab, “Deter project website,” 2015. [Online]. Available:
http://deter-project.org/

[32] R. Goodfellow, R. Braden, T. Benzel, and D. E. Bakken, “First
steps toward scientific cyber-security experimentation in wide-area
cyber-physical systems,” in Proceedings of the Eighth Annual Cyber
Security and Information Intelligence Research Workshop, ser. CSIIRW
’13. New York, NY, USA: ACM, 2013, pp. 39:1–39:4. [Online].
Available: http://doi.acm.org/10.1145/2459976.2460021

[33] U. of Washington. (1993) Power svstems test case archive. [Online].
Available: http://www.ee.washington.edulresearch/pstca




