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ABSTRACT

Voltage regulation in power distribution networks has been in-
creasingly challenged by the integration of volatile and inter-
mittent distributed energy resources (DERs). These resources
can also provide limited reactive power support that can be
used to optimize the network-wide voltage. A decentralized
voltage control scheme based on the gradient-projection (GP)
method is adopted to minimize a voltage mismatch error ob-
jective under limited reactive power. Coupled with the power
network flow, the local voltage directly provides the instanta-
neous gradient information. This paper aims to quantify the
performance of this decentralized GP-based voltage control
under dynamic system operating conditions modeled by an
autoregressive process. Our analysis offers the tracking er-
ror bound on the instantaneous solution to the transient opti-
mizer. Under stochastic processes that have bounded iterative
changes, the results can be extended to general constrained
dynamic optimization problems with smooth strongly convex
objective functions. Numerical tests using a 21-bus network
have been performed to validate our analytical results.

1. INTRODUCTION

Recent deployment of smart grid technologies has witnessed
increasing penetration of distributed energy resources (DERs)
such as the rooftop photovoltaic panels and batteries of elec-
tric vehicles in the power distribution networks. As these re-
sources are generally volatile and intermittent, they greatly
challenge the operational goal of maintaining a satisfactory
voltage level per power system reliability standards. Through
advancements in power electronics, DERs is also an excellent
resource of reactive power, a quantity that is known to have
a significant impact on the network voltage level. Hence, a
plausible solution is to design effective voltage control strate-
gies requiring minimal hardware implementations to utilize
the reactive power from DERs.

The communication infrastructure deployed in power dis-
tribution networks is, and will continue to be lacking in the
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foreseen future. In this sense, voltage control designs by min-
imizing the global voltage mismatch error is often not feasible
as they strongly depend on the quality of communication links
either between a control center and remote devices [1], or
among neighboring devices [2–4]. Therefore, decentralized
voltage control frameworks are more favored for distribution
network operations to tackle this challenge; see e.g., [5–8].
Our earlier work [8] has proposed several decentralized volt-
age control designs along with the convergence analysis for
static system scenarios. Thanks to the physical power net-
work coupling, the most up-to-date gradient direction for a
centralized weighted voltage error objective can be obtained
through the local voltage measurement. Interestingly, the de-
centralized voltage control approach using this measurement
is equivalent to the classical gradient-projection (GP) method
which accounts for the reactive power resource limits.

This paper offers the analytical performance of the de-
centralized GP-based voltage control design under dynamic
power network operating conditions. This problem boils
down to a stochastic optimization one since the objective
function is time-varying; see e.g., [9]. Under stochastic
approximation frameworks, recent work in [10,11] has devel-
oped the stochastic (sub-)gradient decent method, which has
been adopted by [12] for solving this voltage control prob-
lem. However, the performance analysis has been focused on
the convergence to the optimal solution, which minimizes the
expected objective function [9]. Aiming at the error bound
in tracking the instantaneous optimal solution, our analysis
is more closely relevant to the body of work on dynamic
convex optimization; see e.g., [13, 14]. Although some of
these dynamic optimization methods involve gradient descent
updates [15], the formulation of constrained optimization has
not been considered. However, our voltage control problem
has to account for reactive power resource limits in order
to provide feasible control inputs. The contribution of this
work lies in the development of constrained dynamic opti-
mization framework for which the projection operator in the
GP updates has to be explicitly accounted for. Motivated
by the specific dynamic voltage control problem, we derive
the tracking error bounds for a quadratic objective function
under an autoregressive dynamic process. The analytical
results can be extended to generic constrained dynamic op-
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Fig. 1. A radial distribution network with bus and line asso-
ciated variables.

timization problems with smooth strongly convex objective
functions under stochastic processes that have bounded itera-
tive changes.

2. SYSTEM MODELING
A power distribution network is modeled using a tree-
topology graph (N , E) with the set of buses (nodes) N :=
{0, ..., N} and the set of line segments (edges) E := {(i, j)};
see Fig. 1 for a radial network illustration. At every bus j,
let vj denote its voltage magnitude and pj (qj) represent the
active (reactive) power injection, respectively. All system
quantities are in per unit (p.u.). Bus 0 corresponds to the
point of common coupling, assumed to have unity reference
voltage; i.e., v0 = 1. For each line (i, j), let rij and xij
denote its resistance and reactance and Pij and Qij represent
the power flow from i to j, respectively.

To tackle the nonlinearity of power flow models, one can
assume negligible line losses and almost flat voltage, i.e.,
vj ∼= 1, ∀j. For each (i, j), the linearized power flow [16]
asserts the bus power balance and line voltage drop under
these assumptions, as given by

Pij −
∑
k∈N+

j
Pjk = −pj , (1a)

Qij −
∑
k∈N+

j
Qjk = −qj , (1b)

vi − vj = rijPij + xijQij (1c)

where the neighboring bus set N+
j := {k|(j, k) ∈ E , and k

is downstream from j}.
To construct the matrix form of (1), denote the graph in-

cidence matrix using the (N + 1)×N matrix Mo. Each one
of its `-th column corresponds to a line (i, j), with all zero
entries except for the i-th and j-th (see e.g., [17, pg. 6]). We
set Mo

i` = 1 and Mo
j` = −1 if j ∈ N+

i . Let mT
0 repre-

sent the first row of Mo corresponding to bus 0 while the rest
of the rows are in the N × N submatrix M. Since the net-
work is connected under the tree-topology assumption, M is
full-rank and invertible [17]. Upon concatenating all scalar
variables into vector form, one can represent (1) as

−MP = −p, (2a)
−MQ = −q, (2b)

m0 + MTv = DrP + DxQ (2c)

where the N ×N diagonal matrix Dr has diagonals equal to
all line rij’s; and similarly for Dx having all xij’s. One can

solve for P and Q in (2) by viewing the uncontrollable p as a
constant to establish the following:

v = Xq + v̄ (3)

where the nominal voltage vector v̄ captures the effects of p
when q = 0, while X := M−TDxM

−1 represents the net-
work reactance matrix which is positive definite. The linear
model (3) constitutes the basis for developing decentralized
voltage control designs.

3. DECENTRALIZED VOLTAGE CONTROL

The goal is to control the reactive power q, such that v ap-
proaches a given desirable voltage profile µ. The flat volt-
age profile is typically chosen; i.e., µ := 1. At every time
instance k, let v̄k denote the instantaneous nominal voltage
profile. To allow for a decentralized control design, it turns
out that one can minimize a weighted voltage mismatch error
using B := X−1, as given by

q∗k = arg min
q∈Q

fk(q) :=
1

2
‖Xq + v̄k − µ‖2B (4)

where the weighted squared norm ‖x‖2B := xTBx, ∀x. The
constraint set Q := {q

∣∣q ∈ [q, q̄]} accounts for the limits of
local reactive power resources at every bus [6]. Although the
quadratic convex problem (4) minimizes a weighted objec-
tive, it has been shown in [8] that q∗k can closely approximate
the optimal solution to the ideal unweighted error norm, es-
pecially if there are abundant reactive power resources.

Thanks to the separable structure of the box constraintQ,
the gradient-projection (GP) method [18, Sec. 2.3] can be
invoked to solve (4). Upon forming its instantaneous gradient
∇fk(qk) := Xqk + v̄k − µ, the GP iteration for a given
positive stepsize ε > 0 is

qk+1 = P [qk − εD∇fk(qk)] (5)

where the projection operator P bounds any input to be within
Q, and D := [diag(X)]−1 approximates the Newton gradient
[18, Sec. 3 .3]. Note that a positive diagonal matrix D affects
neither the separability of operator P, nor the optimality of
the update (5).

By setting the GP iterate qk ∈ Q to be the control in-
put at any time k, the instantaneous voltage becomes vk =
Xqk + v̄k based on (3). Thanks to the physical power net-
work coupling, vk always provides the most up-to-date gra-
dient information as ∇fk(qk) = vk − µ. Accordingly, the
GP update in (5) can be implemented by directly measuring
the instantaneous voltage as

qk+1 = P [qk − εD(vk − µ)] , (6)

which can be completely decoupled into decentralized up-
dates at each bus because P is separable. With a proper step-
size ε choice, the decentralized update (6) converges to the
optimizer q∗k to the problem (4) for a constant v̄k = v̄ [8].



4. DYNAMIC PERFORMANCE ANALYSIS
The volatility and intermittence of loads and generations lead
to temporal variations in the network operating condition, i.e.,
a dynamic v̄k. Thus, it is imperative to analyze the perfor-
mance of the decentralized voltage control under a dynamic
setting.

To this end, the first order autoregressive (AR(1)) process
is used to model the short-term voltage dynamics.
(as1) For a given constant vector c̄, the nominal voltage v̄k
follows a wide-sense stationary AR(1) process, as given by

v̄k+1 = Av̄k + ηk+1 + c̄ (7)

where A is a constant transition matrix, and ηk+1 represents
a zero-mean white noise process with covariance matrix Ση .
The largest eigenvalue of matrix A is less than 1 to ensure
stability,.

The spatial correlation is often time negligible for real
power networks, as demonstrated in [19]. Hence, the AR(1)
model (7) can be simplified as follows:

v̄k+1 = αv̄k + ηk+1 + c̄ (8)

with Ση = σ2I. Accordingly, the stability condition requires
the forgetting factor |α| < 1, thus v̄k has the mean Ev̄k =
c̄/(1 − α) and the covariance Σv̄ = σ2/(1 − α2)I. The
smaller the value of |α| is, the faster that the nominal voltage
v̄k evolves.

To quantify the performance of (6) under the dynamic
model in (7), we first introduce an equivalent form for the
update (6), given by

D−
1
2 qk+1

= P̃[D−
1
2 qk − εD

1
2 XD

1
2 D−

1
2 qk − εD−

1
2 (v̄k − µ)]

(9)
where the projection operator P̃[·] thresholds any input to the
set Q̃ := {q

∣∣q ∈ [D−
1
2 q,D−

1
2 q̄]}.

Lemma 1. For the AR(1) model under (as1), the expectation
of the weighted norm of consecutive difference is bounded;
i.e., there exists B <∞ such that

E‖v̄k+1 − v̄k‖2D ≤ B. (10)

Proof: For the convenience of exposition, we show it using
the simplified model (8). Specifically, its weighted covariance
equals to

E‖v̄k − Ev̄k‖2D =
1

1− α2
E‖ηk‖2D =

σ2TrD

1− α2

Accordingly, we can show that

E‖v̄k+1 − v̄k‖2D = E‖(α− 1)(v̄k − Ev̄k) + ηk+1‖2D
= E

{
(α− 1)2‖v̄k − Ev̄k‖2D + ‖ηk+1‖2D

}
=

2σ2TrD

1 + α
.

For the simplified model, the upper bound B in (10) is exact.
It is possible to follow the same analysis for the general AR(1)
model (7) to derive an upper bound B, which would similarly
depend on Ση and A.

Lemma 2. For any vectors a, b, c of the same dimension and
any positive scalars a, b > 0, the following equality holds

‖a + b + c‖2 ≤ (1 +
1

a
)(1 +

1

b
)‖a‖2

+ (1 +
1

a
)(1 + b)‖b‖2 + (1 + a)‖c‖2.

(11)

Theorem 1. Under (as1) and for any 0 < ε < 2/M , where
M is the largest eigenvalue of matrix D

1
2 XD

1
2 , the expecta-

tion of the weighted tracking error between the decentralized
control update qk of (6) and the instantaneous optimal solu-
tion q∗k can be bounded by

E‖qk − q∗k‖2D−1 ≤ ρkE‖q0 − q∗0‖2D−1 + 1−ρk
1−ρ Θ, ∀k

(12)
where the geometric rate ρ ∈ (0, 1) and 0 < Θ < ∞ is a
bounded constant gap.

Proof: Let us form the weighted tracking error

q̃k+1 := D−
1
2 qk+1 −D−

1
2 q∗k+1

= P̃
[
D−

1
2 qk − εD

1
2 (Xqk + v̄k − µ)

]
− P̃

[
D−

1
2 q∗k+1 − εD

1
2 (Xq∗k+1 + v̄k+1 − µ)

]
.

Using Lemma 2 and denoting b̂ := (1 + 1
a )(1 + 1

b ) and b̄ :=
(1+ 1

a )(1+b), the weighted tracking error norm can be further
bounded by

‖q̃k+1‖2 ≤b̂‖I− εD
1
2 XD

1
2 ‖2‖q̃k‖2

+b̄‖I− εD 1
2 XD

1
2 ‖2‖q∗k − q∗k+1‖2D−1

+(1 + a)ε2‖v̄k+1 − v̄k‖2D. (13)

The second term in the right-hand side involves the following
weighted norm:

‖q∗k − q∗k+1‖2D−1

=
∥∥∥P̃ [D− 1

2 q∗k − εD
1
2 (Xq∗k + v̄k − µ)

]
− P̃

[
D−

1
2 q∗k+1 − εD

1
2 (Xq∗k+1 + v̄k+1 − µ)

]∥∥∥2

≤ (1 + 1
c )‖I− εD 1

2 XD
1
2 ‖2‖q∗k − q∗k+1‖2D−1

+(1 + c)ε2‖v̄k+1 − v̄k‖2D,

for any scalar c > 0. Taking the expectation on both sides
leads to the bound

E‖q∗k − q∗k+1‖2D−1 ≤
(1 + c)ε2

1− (1 + c−1)‖I− εD 1
2 XD

1
2 ‖2

B

(14)



where the constant B follows from Lemma 1. Further define
ρ := b̂‖I− εD 1

2 XD
1
2 ‖2 and a positive constant

Θ :=

(
b̄(1+c)ε2

‖I−εD
1
2 XD

1
2 ‖−2−(1+c−1)

+ (1 + a)ε2
)
B.

By taking the expectation of (13) and substituting (14), we
write the equality as

E‖q̃k+1‖2 ≤ρE‖q̃k‖2 + Θ. (15)

One can eventually show the inequality (12) by applying
induction. As long as 0 < ε < 2/M , we have ‖I −
εD

1
2 XD

1
2 ‖ < 1. In addition, for any choice of a, b > 0 and

accordingly any b̂ = (1 + 1
a )(1 + 1

b )→ 1, the inequality (15)
holds. Thus, if the step size 0 < ε < 2/M , we can show that
the contraction coefficient ρ := b̂‖I − εD 1

2 XD
1
2 ‖ ∈ (0, 1).

This completes our proof.

Remark 1. (Generalizations.) Although our tracking error
bound in Theorem 1 is customized for the quadratic objec-
tive, it can be extended for analyzing general GP method
for a smooth (gradient of the objective is Lipschitz contin-
uous), strongly convex objective with slight modifications.
For this general framework, the stability condition becomes
‖I − εDX‖ < 1. Moreover, the AR(1) process assumed to
model the v̄k series can be possibly extended to a general
stochastic process that has bounded iterative changes as the
constant Θ in (12) is bounded if the condition in (10) holds.

5. NUMERICAL TESTS
We investigate the performance of the decentralized voltage
control scheme under time-varying system operating condi-
tions. The desired voltage magnitude µj is chosen to be 1
p.u. at every bus j. A single-phase radial power distribu-
tion network consisting of 21 buses is used to test the al-
gorithm. The impedance of each line segment is set to be
(0.233 + j0.366)Ω. The limits of reactive power resources at
every bus are chosen to be [−100, 100]kVA. For the nomi-
nal voltage v̄kunder AR(1) process, we set the mean voltage
at bus j to be c̄j/(1 − α) = 1.025 − 0.05

19 (j − 1) and noise
variance σ2 = 6× 10−6.

For a fixed α = 0.1, Fig. 2 plots the iterative voltage
mismatch error performance averaged over 30 random real-
izations with various choices of ε. The case of no voltage
control is also plotted with the corresponding error staying
constant. The maximum value ε = 0.0061 is chosen accord-
ing to the bound 2/M in Theorem 1. As shown clearly in
Fig. 2, a larger stepsize ε leads to slightly faster convergence
of the voltage mismatch. However, the steady-state voltage
mismatch error is higher for the largest ε. This observation
coincides with the analytical results of Theorem 1. The con-
vergence geometric rate ρ depends on an appropriate choice
of ε, while the steady-state error related constant Θ tends to

Fig. 2. Iterative voltage mismatch error performance av-
eraged over 30 random realizations for the voltage control
scheme with different ε values.

Fig. 3. Iterative voltage mismatch error performance av-
eraged over 30 random realizations for the voltage control
scheme with various values of forgetting factor α.

increase with a larger ε choice. Thus, the choice of εwould be
able to trade off between the steady-state error and the con-
vergence speed.

We also vary the forgetting factor α for the AR(1) pro-
cess with values ranging from 0.1 to 0.999. The stepsize ε is
fixed at 0.0031. For comparison purposes, the variance of the
nominal voltage at every bus is aligned to be the same for dif-
ferent α values by setting it to be σ2/(1− α2) = 10−5. Note
that the expected consecutive voltage difference bound B in
Lemma 1 decreases as α approaches its upper bound 1. Fig. 3
plots the corresponding voltage mismatch error performance
averaged over 30 random realizations. As expected, the error
performance improves with a larger α value since a smaller
constant B leads to a decreasing Θ value.

In summary, the choice of stepsize ε affects the conver-
gence speed. The stepsize should to be properly chosen trad-
ing off between the convergence speed and the steady-state
error performance. The dynamics of nominal voltage series
based on the AR(1) process parameters does not influence the
convergence speed per se, yet more significantly related to the
steady-state tracking error performance.
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