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Abstract—We develop a general framework for pricing elec-
tricity in order to optimally manage the electricity load of so-
cietal infrastructures that interact with power systems through
their price-responsive electricity load. In such infrastructure
systems, electricity is not the sole resource needed to serve
users’ needs. Examples include cloud computing infrastructure
or electric transportation networks. In these cases, other shared
networked resources such as charging stations or communica-
tion links and data centers are also required to serve users.
Hence, pricing of electricity becomes intertwined to managing
other congestible resources not priced by the power system
operator, leading to a complex economic dispatch problem. For
brevity of notation, our analysis is performed under a static
setting. We discuss how the power system operator should
model the effects of the mobility of loads and congestion in
the infrastructure in the economic dispatch. We numerically
study the performance of our algorithms using the example of
a simple electric transportation network.

I. INTRODUCTION

Demand-side management programs aim to influence the
amount and timing of our societal resource consumption to
improve efficiency. In particular, dynamic pricing programs
in power systems offer operators a chance to tap into the
enormous opportunities that would follow from a more price-
sensitive demand behavior. However, making the demand
for resources flexible comes with its own set of challenges,
mostly geared towards finding the right price. A significant
body of literature has been dedicated to studying the different
aspects of electricity pricing in the presence of flexible loads
(see, e.g., [1]–[6]). An implied assumption in these works is
that electricity is the sole congestible resource that electric
loads need. However, our work is motivated by the fact that
demand management introduces a novel form of coupling
(feedback) between the grid and societal-scale networked
infrastructures with flexible electricity load. The reason is
that such infrastructures do not depend solely on electricity to
serve end-users and have their own congestion management
problems. We provide examples in the next paragraph.

A significant amount of flexibility could follow from
the electricity demand that supports the delivery of goods
and services by networked infrastructure systems. Prominent
examples include: cloud computing services and Internet data
centers [7]–[10] and electric transportation systems [11]–
[14]. Unlike traditional responsive loads (such as HVACs),
here electricity consumption is coupled with another form
of constrained (congestible) network resource to serve users.
Whether it’s by routing the workload to capacity-constrained
data centers through links with limited bandwidth, or by
routing Electric Vehicle (EV) owners to charge at different

locations considering the limited capacity of charging stations
and feeders, network service retailers’ electric load flexibility
is tied to their ability to overcome congestion and manage
mobility in their respective infrastructure system. Since such
congestion also incurs costs for the retailers, their overall ser-
vice decisions would not be solely based on their electricity
costs. Hence, their load flexibility cannot be described using
a simple bid to the wholesale power system operator. As
shown in [16], ignoring this coupling of objectives between
electricity cost minimization and network management can
result in operational instabilities for the power grid. This
interests us in studying electricity pricing in such cases.

We consider the problem of wholesale price design to tap
into the load flexibility of network service retailers that serve
users of societal infrastructure through long-term subscrip-
tions. We assume that the retailers have direct control over the
Quality of Service (QoS) provided to customers and need to
control their costs while maintaining QoS. Each retailer owns
(or co-owns) a number of geographically-dispersed service
centers. Example of this includes EV drivers subscribing to
a network of charging stations owned by a company and
being directly assigned to optimal charging locations or tasks
routed to and served via Internet data centers.

Prior art regarding electricity price design for price-
responsive infrastructures: The authors in [14] consider the
case where the operator tracks the mobility of large fleets
of EVs and their energy consumption and designs optimal
multi-period Vehicle-to-Grid strategies. In our previous work
in [15], [16], we studied how non-profit transportation and
power system operators can collaborate together to consider
an interconnection introduced between their systems through
EVs. Some of the main assumptions that [15], [16] rely on
are that EV owners directly buy electricity from the system
operator (i.e., no retailers), and that all transportation links
and charging stations can have Pigovian taxes, e.g., tolls,
imposed on them. Similar assumptions were adopted in [17],
where the authors study the EV charge control problem with
wireless charging. We remove these assumptions here by
including retailers in the picture and studying the effects
of removing tolls. We concur that our model does not yet
capture all the intricacies of this complex problem, but we
consider it a first step towards a more holistic treatment.

Outline: We first introduce the major players in this
problem in Section II. This includes the wholesale power
system operator and the network service retailers that serve
infrastructure users (and buy electricity from the wholesale
market to do so). We also define the concept of virtual paths
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Fig. 1. The operations of the power system and an electric transportation
network coupled together through service retailers (charging network oper-
ators). These charging network operators buy electricity to serve users and
also manage congestion in the charging facilities due to limited number of
stations and feeder constraints. The could potentially provide route guidance
to electric vehicles owners as well.

on an extended graph which helps to model the effect of
the retailers’ decisions on electricity load. In Section III, we
model each player’s decision making process mathematically.
In Section IV, we study whether we can enforce socially
optimal consumption behavior through electricity pricing
with the help of congestion tolls. In Section V, we study
the scenario where the only way to influence the retailers’
electricity consumption is through electricity prices, and no
tolling is possible. Finally, Section VI is dedicated to a
numerical study in electric transportation systems.

II. THE BASICS

Here we describe the basic elements in the picture when
a societal infrastructure such as the electric transportation
system has price-responsive load (see Fig. 1).

A. Infrastructure System

We consider a set of geographically-dispersed heteroge-
neous service centers S that use electric energy to serve
customer needs and support the functionality of an infras-
tructure system. These service centers are connected via
a directed connectivity graph GI . This connectivity graph
models a network of congestible links that allow goods to
be transported geographically. For example, in an electric
transportation network, the arcs correspond to roads, and the
service centers correspond to battery charging stations.

B. Power System

The power system provides electricity to service centers of
the infrastructure system and is represented through a graph
GP = (V,L). Each node v ∈ V on the power grid graph
has an associated price for electricity pv that is chosen by
the Independent Power System Operator (IPSO). The pricing
mechanism we choose in this paper is Locational Marginal

Pricing (LMP) [18] (simple definition given in Section III-C).
If electricity was the sole resource the retailers needed to
serve users, the LMP mechanism would have induced a
welfare-maximizing load and generation profile.

C. Service Retailers

We consider the scenario where the service centers that
keep the infrastructure system functional are operated by
competing retailers to serve their population of subscribers.
Each end-user subscribes to one such retailer r ∈ R. The
subscriptions are long-term contracts that we consider as
given in this work. The retailers need to assign incoming jobs
to service centers by considering the effect of geographically-
variant power system prices in their costs among other vari-
ables such as transport delays and service center capacities.

D. End-user Needs

Heterogeneous user needs originating at different nodes
of the infrastructure network usually require one of the two
following types of service:

1) Transport networks: in this type of network, the jobs
specify the need to move people or material to different
destination nodes. We assume that electric service
centers are required to enable this transport. This could
represent battery charging in electric transportation
networks, or pumps in water networks.

2) Resource-sharing networks: in this type of network,
transportation of goods is not the primary goal of the
infrastructure. Rather, the users require resources that
can be made available to them via one or more of
the geographically-dispersed service centers. Hence,
transportation is a secondary service to make shared
resources available to users. An example is cloud
infrastructure, where high speed transport of the data
is a knob to enable data processing as a shared service
and cloud-to-cloud interoperability. In short, here trans-
portation enables resource sharing at service centers.

In both type of networks, each retailer needs to pick the
best combination of routes on the connectivity graph and
service delivered by the service centers it owns in order to
best serve its users. The criterion applied for the optimum
planning is to minimize operational costs while keeping the
users happy about the quality of service (QoS) they receive.

E. Feasible Virtual Paths

Each retailer needs to capture the aggregate effect of
choosing different transport and service options for each
arriving job from its subscribers on the total incurred cost.
While it is quite natural to think of the transportation side
of the retailers’ objective as a network flow assignment
problem [19] (and the pertinent literature provides a clear
understanding of how different path choices for transport
will affect aggregate network flow), flow models are not
readily adaptable to resource allocation choices at service
centers. But service centers are exactly where electricity is
consumed and what interests power system operators. Hence,
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Fig. 2. Top: infrastructure system connectivity graph GI , with service
centers at nodes 1 and 3; Bottom: extended graph Ge

I with virtual entrance
and service arcs (representing finite number of service choices).

in capturing the effect of service decisions on electricity
costs, the challenge is to find the right models to capture the
aggregate effect of retailers’ decisions to process arriving jobs
at different service centers (and with different QoS levels) on
the power load. As an example of this challenge, consider a
retailer that needs to route a number of EV owners across
congestible roads and charging stations while providing them
with the right amount of battery charge so as to avoid the
EV batteries being depleted mid-travel. The challenge for
this retailer is how to guide the route and charge decisions
of each vehicle in an optimal manner so they can reach their
final destination, where optimality is typically characterized
by electricity and traffic congestion costs.

By assuming that only a finite number of processing
choices are available at each service center for incoming
jobs, e.g., a finite number of choices for how much an
EV can charge their battery at a charging station, here we
recast the joint transport and service problem as a network
flow problem on a new extended multigraph GeI (B, E). The
extended graph GeI is defined by associating service decisions
made at each service center to flows on a set of new virtual
service arcs. These arcs are to be added at all such nodes
of the graph GI where a service center is located. To enter a
service center, a job has to be pass through a virtual entrance
arc that can capture congestion at the service center (see arcs
labeled ‘enter’ in Fig. 2). The virtual arcs labeled ’not enter’
have no travel cost and take zero time to travel. Upon arrival
at the service center, the type of service to be received is
represented by the choice of virtual service arc.

A job can be served by retailer r if it is routed through a
virtual path on GeI that is feasible for retailer r. We define
feasibility as follows: in a transport network, a path is feasible
if 1) all arcs on the path are public or are privately owned by
retailer r; 2) the service choices represented by the virtual
arcs can provide the energy needed for transport, e.g., if
enough battery charge is received for an EV to complete

a trip. In a resource-sharing network, a path is feasible if
1) all arcs on the path are public or are privately owned by
retailer r; 2) the work performed at service centers satisfies
the job specifications, e.g., if the processing requirements of
a job are met by the cloud infrastructure.

We use this notion of extended graph to solve a class of
problems pertaining pricing electricity in coupled infrastruc-
tures. Relying on this abstraction, next we model all agents
involved mathematically.

III. SYSTEM MODEL

In this section, we model the electric load flexibility of an
infrastructure using a network flow problem (see, e.g., [19])
on the extended infrastructure graph defined in Section II-E.

A. Infrastructure Network Flow Model

For each retailer r ∈ R, arriving jobs can belong to one
of finite classes c ∈ Cr. The average rate of arrival of class
c jobs is denoted by uc. This is considered as a given static
parameter in the retailer’s decision problem. These arriving
jobs can be served by being assigned to one of the feasible
virtual paths k ∈ Kc on the extended graph GeI (see Section
II-E). The rate of transfer (flow) of class c jobs assigned to
virtual path k is denoted by fkc and is a decision variable for
the retailer. The vector of path flow decisions made for class
c jobs is denoted in vector form as fc = [fkc ]k∈Kc .

We require that all arriving jobs be served. This translates
into the following flow conservation constraint:

1T fc = uc, ∀c ∈ Cr,∀r ∈ R. (III.1)

Given the path decisions of all incoming jobs, the flow of
jobs served by retailer r through arc a on the extended graph
is given by λra =

∑
c∈Cr,k∈Kc

δkaf
k
c , where δka is an arc-path

incidence indicator (1 if arc a is on path k and 0 otherwise).
This is written in matrix form as:

λr =
∑
c∈Cr

Acfc, (III.2)

where λr = [λra]a∈E denotes the vector of network flows due
to retailer r on the extended graph GeI . The matrix Ac is a
|E| × |Kc| matrix such that [Ac]a,k = δka . The total flow on
the extended infrastructure graph is given by:

λ =
∑
r∈R

λr (III.3)

The flow on the virtual arcs of the extended graph leads
to an electricity load. Let us denote the set of all virtual arcs
associated with service centers connected to node v of the
power grid as Ev and the corresponding electric load due to
service centers as a vector d = [dv]v∈V . Then, we can write:

d = Mλ, (III.4)

where M is a |B| × |E| matrix given by:

[M]v,a =

{
ea, a ∈ Ev,
0, else,
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and ea denotes the energy consumed when a job is routed
through virtual arc a. This could represent the amount of
charge to be delivered to an EV battery, or the power
consumed by processors serving a job at a data center
(including cooling costs). Alternatively, we can distinguish
between the demand due to each retailer and write (III.4) as:

d =
∑
r∈R

dr =
∑
r∈R

Mλr. (III.5)

B. Individual Retailer Problem

Each retailer aims to serve all incoming jobs while mini-
mizing the congestion costs on transportation and service arcs
plus electricity costs. The time spent on an arc is considered
a function of the flow on the arc. This is true for both
transportation arcs, e.g., communication network delays as
a function of rate, as well as for virtual arcs, e.g., processing
delay of jobs or waiting at the charging station. Hence, we
denote the congestion cost of arc a on the extended graph
as a function sa(λa) of the flow on the arc λa, and we
use s(λ) = [sa(λa)]a∈E . We assume that sa(λa) can be
expressed as:

sa(λa) = θa(λa)
oa + βa, (III.6)

commonly referred to as the Bureau of Public Roads (BPR)
delay function. The parameters (θa, oa, βa) are given con-
stants for each arc. For all virtual arcs except for entrance
arcs, we assume that θa = 0.

Given the network flow due to all other retailers besides
retailer r, denoted as λ−r :=

∑
r′ 6=r λ

r′ , each retailer r
would optimize its own flow to minimize costs. Given the
vector of LMPs, denoted by p, we define an auxiliary cost
function for each arc a on the extended graph as:

h(λ̃
r
+ λ−r;p) := s(λ̃

r
+ λ−r) + MTp. (III.7)

We also define transportation tolls imposed on each arc of the
transportation graph (including virtual arcs) as η = [ηa]a∈E .
Accordingly, the cost function of retailer r is:

Jr(λ̃
r
;λ−r;p) := (λ̃r)T [h(λ̃r + λ−r;p) + η]. (III.8)

Hence, the cost minimization problem of retailer r can be
formulated as:

min
fc,c∈Cr

Jr(λ̃r;λ−r;p)

s.t. fc ≥ 0, 1T fc = uc, ∀ c ∈ Cr,
λ̃r =

∑
c∈Cr Acfc.

(III.9)

Let us also denote the feasible set of λ̃r’s in (III.9) as Fr :=
{λ̃r : λ̃r =

∑
c∈Cr Acfc, fc ≥ 0, 1T fc = uc, ∀ c ∈ Cr}.

Notice that ≥ denotes element-wise inequality.
The retailer optimization problems are coupled through

the system-wide network flow variable λ = λ̃r + λ−r. The
implications of this coupling will be discussed in Section IV.
We next discuss how the IPSO sets the LMP p = [pv]v∈V .

C. The IPSO’s Economic Dispatch Problem

To serve the electricity demand of the infrastructure, a set
of generators are located at different nodes of the power
network. For brevity, let us assume that a single merged
generator is located at each node of the grid. Assuming
that the generation at each node is denoted by a vector
g = [gv]v∈V and the baseload1 by a vector ` = [`v]v∈V ,
there are two constraints that define a feasible dispatch g.
First of all, the demand/supply balance requirement of the
power grid should be met, i.e.,

1T (d + `− g) = 0, (III.10)

where we recall that d = Mλ is the electric load due to
service centers (cf. (III.4)). Second, the transmission line flow
constraints under the DC approximation [20] should hold:

H(d + `− g) ≤m, (III.11)

where the matrix H is explicitly defined in [20], and m =
[mf ]f∈L is a vector containing transmission line flow limits.

Let us denote the cost of generating gv units of energy at
node v ∈ V as a convex and continuous function cv(gv), and
the vector of generation costs as c(g) = [cv(gv)]v∈V . Given
a demand d, the IPSO solves an economic dispatch problem
to decide g [21]:

min
g�0

1T c(g) (III.12)

s.t. 1T (d + `− g) = 0,

H(d + `− g) ≤m.

Also, if we introduce Lagrange multipliers γ and µ respec-
tively for the balance and line flow constraints in (III.12), the
LMP vector is given by:

p = γ1 + HTµ. (III.13)

The reader should however note that upon posting this
price, the retailers in the coupled infrastructure would adjust
their network flow λr according to (III.9), hence affecting
the electricity demand d =

∑
r∈RMλr, and the optimal

generation dispatch g. This means that in order to post the
price p, modeling the response of the retailers is required.
We will model and study this interaction in Section IV.

Before proceeding, we state the Lagrangian dual problem
to (III.12) for later use. We adopt a quadratic generation cost
function, hence writing 1T c(g) as (1/2)gTΣg+bTg, where
Σ is a given positive diagonal matrix. Then, the dual problem
is:
min
µ,γ

1
2 (H

Tµ+ γ1− b)TΣ−1(HTµ+ γ1− b)
−(H(d + `)−m)Tµ− γ1T (d + `)

s.t. µ ≥ 0, HTµ+ γ1 ≥ b,
0 = 1T (d + `−Σ−1(HTµ+ γ1− b)),
m−H(d + `) + HΣ−1(HTµ+ γ1− b) ≥ 0,
µT (m−H(d + `) + HΣ−1(HTµ+ γ1− b)) ≤ 0.

(III.14)

1Any electric load that is exogenous to the networked infrastructure
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Given the optimal dual solution (µ∗, γ∗), the optimal gener-
ation pattern can be computed from the KKT condition as:

g∗ = Σ−1(HTµ∗ + γ∗1− b). (III.15)

IV. SOCIALLY OPTIMAL PRICING

The retailers selfishly adjust their flow over the infras-
tructure network as well as as their electricity use through
the power grid. Since transportation arcs and some service
centers are shared resources, this leads to a non-cooperative
game between these retailers. The solution concept adopted
is Nash Equilibrium (NE), i.e., we seek a feasible multipolicy
Λ = {λr}r∈R such that all retailers costs are simultaneously
minimized:

Jr(Λ) = min
λ̃

r∈Fr
Jr(λ̃

r
;λ−r;p),∀r ∈ R (IV.1)

Next, we study the electricity price design problem by
assuming that the service retailers are price-takers in the
electricity market, i.e., they do not attemp to individually
affect the market prices. This is a requirement for operation
of competitive electricity markets and a common assumption
in the literature.

A. Nash Equilibrium and Enforcable Flows

So how can the IPSO design the prices p considering the
flexibility of the demand? To answer this question, we must
first characterize the set of electricity demand values that can
potentially result from a NE in the game between retailers.

Theorem IV.1. The NE of the game between retailers exists
[22] and is unique when oa ≤ 3|R|−1

|R|−1 ,∀a ∈ E [23].

Note that oa is the exponent of the BPR model in (III.6).
The theorem simply extends results in [22], [23] on com-
petition in network routing games to electricity price-aware
route and service decisions taken in networked infrastructure
systems. This extension is possible since we defined the con-
cept of an extended infrastructure graph to capture electricity
consumption decisions on a network. Note that ∀|R| ≥ 2,
3|R|−1
|R|−1 > 3.

This NE would then lead to a certain flow on the extended
graph and hence an electricity load pattern that is not
necessarily socially optimal. The IPSO’s goal, as described
in Section III-C, is to design electricity prices to affect the
electricity load of the infrastructure and lower generation
costs. Now, the question is: which electricity load patterns
can be enforced as a NE? This is tied to the following
question: which set of flows (and hence electricity loads)
can be enforced as a NE on the extended graph? To answer,
we first assume that all arcs in the extended infrastructure
graph accept tolls. This means that all roads in an electric
transportation network or all communication links in a cloud
computing network, as well entrance links into service cen-
ters, can accept tolls designed by an infrastructure system
operator. In Section V, we discuss the effects of the removal
of such assumptions.

Theorem IV.2. A flow pattern λNE = {λNE
a ,∀a ∈ E} can

be enforced as a NE in the infrastructure system iff there
exists an optimal solution λNE for the following convex
optimization problem on the extended infrastructure graph
such that the inequality constraint (IV.4) is tight:

min
fc,c∈Cr,r∈R

∑
r∈R

( ∑
c∈Cr

Acfc

)T
h(λNE ;p)+ (IV.2)

1

2

( ∑
c∈Cr

Acfc

)T
�
( ∑
c∈Cr

Acfc

)T
h′(λNE ;p)

s.t. fc ≥ 0, ∀c ∈ Cr, (IV.3)∑
r∈R

∑
c∈Cr

Acfc ≤ λNE, (IV.4)

1T fc = uc, ∀c ∈ Cr, (IV.5)

where h′(λ;p) := (h′1(λ1;p), ..., h
′
|E|(λ|E|;p))

T , the deriva-
tive h′e(λe;p) is taken with respect to λe, and the operator
� denotes the Hadamard product.

Proof. The proof is similar to that of [24, Theorem 4.1].
By writing the KKT conditions of (III.9) for all r, a certain
routing decision {fc}c∈Cr would lead to an NE iff there exist
ξc ≥ 0 and ζc ∈ R such that:

0 =
(
h′(λ̃

r
+ λ−r;p)1T �Ac

)T( ∑
c∈Cr

Acfc

)
+ AT

c [h(λ̃
r
+ λ−r;p) + η]− ξc − ζc1, (IV.6)

0 = ξc � fc,

for all c ∈ Cr, r ∈ R. We can verify that the conditions in
(IV.6) are equivalent to the KKT conditions of the optimiza-
tion (IV.2) when the inequality (IV.4) is tight. Accordingly,
the optimal tolls η that can enforce a certain flow λNE are
given by the optimal Lagrange multipliers associated with
the constraint (IV.4).

The next question is to characterize the optimal electricity
load that we would ideally like to enforce in the infrastruc-
ture, along with the electricity price that can enforce it.

B. Socially Optimal Electricity Prices

The overall costs of the infrastructure system and the
power grid can be jointly optimized by solving the following
problem:

min
F,g

λTs(λ) + 1T c(g) (IV.7)

s.t. ?


fc ≥ 0, ∀c ∈ Cr,
1T fc = uc, ∀c ∈ Cr,
λ =

∑
r∈R λ

r

λr =
∑
c∈Cr Acfc,

†


gmin ≤ g ≤ gmax,

1T (Mλ+ `− g) = 0,

H(Mλ+ `− g) ≤m,
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This optimal policy would lead to an optimal flow dispatch
λ∗ and generation g∗. Now remember that each retailer r
would incur a cost of:

Jr(Λ∗) = (λr,∗)
T [
s
(
λr,∗ + λ−r,∗

)
+ MTp∗ + η∗

]
.

(IV.8)

So, the question is: does there exist an electricity price p∗

and a toll vector η∗ that can enforce λ∗ in the infrastructure
and power systems? We answer this question in two steps.

Proposition IV.3. Let us first assume that the optimal flow
λ∗ can be enforced in the infrastructure system. Then, the
efficient market clearing LMP p∗ can be calculated through a
collaboration between the IPSO and the infrastructure system
operator without the operators sharing their system data with
each other. This is facilitated through a dual decomposition
based algorithm.

Proof sketch: It is straightforward to show that (IV.7) can
be split into two subproblems, with the first being:

min
fk
c ,c∈Cr,k∈Kc

λTs(λ) + pTMλ (IV.9)

s.t. Constraints marked by (?) in (IV.7)

and the second being the generation dispatch optimization
shown in (III.12), with p calculated as in (III.13). By
iteratively updating the value of p according to the dual
decomposition framework, the solution of these two sub-
problems will converge to that of (IV.7). This can allow the
IPSO and the infrastructure system operators to not share
their system data with each other in order to calculate the
optimal prices of electricity [16].

Hence, if we assume that one can enforce the solution
of (IV.9) as a NE between the retailers, and given that the
IPSO’s problem is enforceable through LMPs, the optimal
flow and generation dispatch can be enforced.

So the problem that remains is whether the solution of
optimization problem (IV.9) is enforceable as a NE, which
we address in the following proposition.

Proposition IV.4. The optimal solution of (IV.9) can be
enforced in the infrastructure system, and the optimal tolls
η∗ can be calculated through (IV.2).

Proof. Denote the optimal solution of (IV.9) as Fopt. The
basic idea behind the proof is similar to that of [25] and
is as follows: For any feasible flow Fopt, one can obtain a
flow Q ≤ Fopt such that every feasible solution, and hence
any optimal solution, to (IV.2) must satisfy all constraints in
(IV.2) with equality. According to Theorem IV.2, such a Q is
enforceable. If Fopt is an optimal solution of (IV.9), then so
is Q; thus, the optimal solution of (IV.9) is enforcable. The
optimal tolls to enforce this flow are the optimal Lagrange
multipliers η∗ in (IV.2) for the flow Q.

V. MPEC FORMULATION CONSIDERING POTENTIAL
TOLL CONSTRAINTS

When the service centers are privately owned by retailers,
there may not be any straightforward financial mechanism to

toll their virtual entrance arcs in most infrastructures. This
problem potentially extends to transportation arcs, particu-
larly in data networks, where many communication links
are privately owned. This means that the optimal solution of
(IV.9) can no longer be enforced. Hence, we must be able to
find the best electricity demand that can be enforced without
imposing tolls on transportation and virtual entrance arcs.

With the congestion in the infrastructure system not being
a concern to the IPSO, the electricity price design problem
can be thought of as a bilevel optimization problem. At the
upper level, the IPSO designs the electricity price and mini-
mizes the cost of generation (cf. (III.12)); while the lower
level problem characterizes the possible set of electricity
loads that can be the result of a NE in the infrastructure.

In particular, using the notation defined in (III.13), the
bilevel optimization problem can be cast as:

min
g,p

1T c(g)

s.t. g ≥ 0, p = HTµ+ γ1,
γ : 1T (d + `− g) = 0, µ : H(d + `− g) ≤m,
d =M

∑
r∈R λ

r,

∀ r ∈ R : λr = arg min
λ̃r∈Fr

J(λ̃r;λ−r;p). (V.1)

We remark that this can be compared to the greedy pricing
approach studied in [16]. In particular, the greedy pricing
approach attempts to solve (V.1) by alternatively solving the
upper and lower level problems. It has been shown that this
approach may results in a limit-cycle type of oscillation in
electricity prices, hence never converging to a stable price.

Through transforming the upper level problem into its
dual form (see (III.14)) and studying the KKT conditions
of the lower-level problem (see (IV.6)), problem (V.1) can be
expressed as follows:

min
1

2
(p− b)TΣ−1(p− b) (V.2)

− (H(d + `)−m)Tµ− γ1T (d + `)

w.r.t. p,x,µ, γ,d,λ, {fc, ξc, ζc}c∈Cr,r∈R
s.t. µ ≥ 0, x ≥ 0, HTµ+ γ1 ≥ b, p = HTµ+ γ1,

0 = 1T (d + `−Σ−1(p− b)),
x = m−H(d + `) + HΣ−1(p− b),
x� µ = 0, (V.3)
λ =

∑
r∈R

∑
c∈Cr Acfc, d = Mλ,

0 = AT
c (h(λ;p) + η) + (h′(λ;p)1T �Ac)

Tλ,

− ξc − ζc1, ∀ c ∈ Cr, ∀ r ∈ R, (V.4)

0 = ξc � fc, fc ≥ 0, ξc ≥ 0, 1T fc = uc, (V.5)
∀ c ∈ Cr, ∀ r ∈ R.

Solving the above problem is non-trivial due to the non-
convexity in the objective function and the constraints (V.3)
– (V.5). While the upper and lower level problems are convex
individually, the non-convexity arises as the optimization
variables of the upper and lower level problems are coupled
together. These are commonly known as the equilibrium
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constraints and (V.2) is thus a mathematical program with
equilibrium constraints (MPEC) [26].

In our case of interest, for the BPR delay function in (III.6),
we consider the parameter oa = 1 for all a. As such, the
element wise derivatives h′a(λa;p) are equal to 1 for all λa.
The equality (V.4) is thus convex and can be written as:

0 = AT
c (h(λ;p) + λ)− ξc − ζc1. (V.6)

To handle the non-convex complementary constraint in (V.2),
we resort to a mixed-integer-programming based approach
[27]. Observe that (V.2) is equivalent to the following:

min
1

2
(p− b)TΣ−1(p− b) (V.7)

− (H(d + `)−m)Tµ− γ1T (d + `)

w.r.t. p,µ,x, zx, γ,d,λ, {fc, ξc, ζc, zc}c∈Cr,r∈R
s.t. µ ≥ 0, x ≥ 0, HTµ+ γ1 ≥ b, p = HTµ+ γ1,

0 = 1T (d + `−Σ−1(p− b)),
x = m−H(d + `) + HΣ−1(p− b),
x ≤ Lzx, µ ≤ L(1− zx), zx ∈ {0, 1}|F|,

λ =
∑
r∈R

∑
c∈Cr

Acfc, d = Mλ,

0 = AT
c (h(λ;p) + η + λ)− ξc − ζc1,

fc ≥ 0, ξc ≥ 0, 1T fc = uc,

fc ≤ L · zc, ξc ≤ L · (1− zc),

zc ∈ {0, 1}|Kc|, ∀ c ∈ Cr, ∀ r ∈ R,

where L > 0 is some sufficiently large number.
However, (V.7) is not a mixed integer program due to non-

convexity in the objective function. As a remedy, we apply
the successive convex approximation technique. We use the
fact that given (dk,µk, γk), the following upper bound holds:

−(Hd)Tµ ≤ 1

4

(
‖Hd− µ‖22 − ‖Hdk + µk‖22

− 2((µ− µk) + H(d− dk))T (Hdk + µk)
)
.

(V.8)

Similarly, we can derive a convex upper bound for the other
bilinear terms in the objective function. This yields a mixed
integer program with convex objective and constraints. The
MPEC problem (V.7) can be tackled using a successive
convex approximation technique, as shown in Algorithm 1.

Note that the infrastructure system’s costs at this NE flow
λNE may be far from the system optimal solution λ∗ in
(IV.7). To study this effect, we update bounds on the so-
called Price of Anarchy (PoA) for atomic network routing
games in [28]. This bound on the PoA determines how much
the infrastructure system users can lose in terms of efficiency
due to selfish behavior (with lack of tolls), considering the
new coupling with the power grid. In other words, it provides
a bound on how much the objective function value in (IV.9)
can increase.

Proposition V.1. The price of anarchy ρ for the infras-
tructure with no tolls imposed on the arcs of the extended

Algorithm 1 Successive Convex Approximation (SCA) for
solving the MPEC problem (V.2) for price design.

1: Initialize: (d0,µ0, γ0);
2: for k = 1, 2, . . . do
3: Given (dk−1,µk−1, γk−1), solve the integer program

(V.7) by replacing its objective function with the
convex upper bound surrogate (cf. (V.8)). Take the
respective optimal solution as (dk,µk, γk).

4: end for
5: Return: the optimal pricing pk and the generation pat-

tern gk (computed from (III.15)).

infrastructure graph is bounded by:

1 ≤ ρ =

(
λNE

)T[
s
(
λNE

)
+ MTpNE

]
(λ∗)

T
[s (λ∗) + MTp∗]

≤ 1

1− ξ
, (V.9)

where ξ = maxa∈E ξa and

ξa = oa

[(
(oaζa + 1)

1
oa

(1 + oa)
1
oa − χa

)
− ζa

]
ζa − oa

(1− ζa)2

|R| − 1

+ (1− ζa)
oa

1 + oa

(
(oaζa + 1)

1
oa

(1 + oa)
1
oa − χa

)
, (V.10)

ζa =
maxr∈R λ

r,NE
a

λNEa
, χa =

∑
b∈B

[M]b,a(p
NE
b − pminb ),

(V.11)
where pminb is the minimum electricity price at bus b (taking
the infrastructure load as zero).

Proof. The new coupling with the power grid affects equa-
tion (9) in the proof outlined in [28], leading the the new
term χa. This new term provides a bound on increase in
electricity costs.

VI. TACKLING THE DIMENSIONALITY PROBLEM IN
LARGE-SCALE NETWORKS

Here, we describe a preprocessing technique to help reduce
the complexity of solving (III.9) in large-scale networks.
Define a covering of Kc as ∪t∈Kc

Ktc. The paths in the same
subset Ktc share the same transportation arcs and entrance
arcs (i.e., stop for service at the same service centers), but
can choose different service options at each service center.
The set Kc includes as its members any sets of arcs on the
extended graph that can be extended into a path in Kc solely
through the addition of virtual service arcs to the set.

Proposition VI.1. One dominating path in each subset Ktc is
sufficient to represent all paths in Ktc in both socially optimal
solutions as well as any selfish user equilibrium.

Proof. This follows from the definition that the cost of
traveling each virtual arc a located at a service center at
node v is a constant (pvea+βa) and does not change with the
flow on the arc. Hence, selfish user selections would coincide
with socially optimal selections in the subnetwork of virtual
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Fig. 3. (Left) Transportation network with the traveling time (in minutes) on
arcs. (Right) Power network labelled with the base load at each bus. Notice
that the nodes ‘San Jose’, ‘Santa Cruz’ and ‘San Rafael’ are not modeled
with fast charging capabilities as these are the set of destination nodes.

service arcs. Thus, electricity costs can be preoptimized and
act as constant mark-ups for each possible combination of
service centers that a job is sent to, and all paths k ∈ Ktc can
be represented through a single dominant path.

Hence, we can simply reduce the size of the set Kc through
an offline calculation for each given price p.

VII. NUMERICAL RESULTS

We consider an application of the proposed joint opti-
mization strategies to a fictitious network, modeled after the
San Francisco bay area, as shown in Figure 3; while the
power network is modeled after the IEEE-9 bus test case.
We assume that the retailers are owners of charging networks
responsible for routing electric vehicles (EVs) traveling be-
tween different origin-destination pairs. There are |R| = 3
retailers in the network, each advising a group of EVs. For
each retailer, there is one class of EVs with uc = 500 and
the drivers of the EVs desire to travel (i) from Stockton to
San Rafael, (ii) from Davis to Santa Cruz and (iii) from
Davis to San Jose. All the EVs are equipped with 20 kWh
of initial charge and each fast charging station allows the
EVs to charge for 0 kWh, 10 kWh or 20 kWh. The battery
capacity of an EV is 60 kWh. Each EV consumes 10 kWh
of charge to travel for 30 minutes.

We compare the total infrastructure cost (electricity and
congestion) for the socially optimal (SO) strategy (IV.7)
and that of the Successive Convex Approximation (SCA)
technique in Algorithm 1. In particular, we solve the convex
approximate mixed-integer second order cone program (V.7)
using the solver gurobi in MATLAB. The simulation re-
sults are presented in Figure 4. As seen, the objective value of
the SCA algorithm converges rapidly. The converged solution
is clearly suboptimal to the optimal flow problem (IV.7) as
the converged solution from Algorithm 1 corresponds to best
possible cost with the retailers’ decisions at a NE with no
tolls. We also evaluate the bound on price of anarchy (PoA)
using Eq. (V.9). In the considered case, the bound on the PoA
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Fig. 4. Total cost of the SCA strategy against the iteration number. Notice
that Theorem V.1 bounds the ratio between the travel cost found by solving
for the NE using (V.7) and travel cost at the social optimum.

is found to be 1.4665. This indicates that the NE solution
yields an infrastructure cost that is at most 1.4665 times the
social optimum cost. This is corroborated in Figure 4 as well.

VIII. CONCLUSIONS AND FUTURE WORK

We studied the problem of optimal electricity prices in
the presence of large networked infrastructure systems with
flexible electricity demand. We believe that our work is
a natural first step toward a theoretical treatment of this
complex problem. The model adopted was rather stylized and
not fine-tuned for any of the specific infrastructures that were
presented as a motivating example. Also, temporal dynamics
common to transportation networks can be captured via a
more notation-heavy formulation that we leave to future
work. We note that dissipative flows common to gas and
water networks cannot be captured under the model proposed
here and we refer the reader to [29] for a detailed treatment of
this type of network flows. Furthermore, finding the solution
of the realistic economic dispatch problem (V.1) requires
complex bid formats from the retailers that we plan to study
further in the future.
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