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Abstract—Intrusion resilience is a protection strategy aimed
at building systems that can continue to provide service during
attacks. One approach to intrusion resilience is to continuously
monitor a system’s state and change its configuration to maintain
service even while attacks are occurring. Intrusion detection,
through both anomaly detection (for unknown attacks) and
signature detection (for known attacks) is thus a crucial part of
that resilience strategy. In this paper, we introduce KOBRA, an
online anomaly detection engine that learns behavioral baselines
for applications. KOBRA is implemented as a set of cooperative
kernel modules that collects time-stamped process events. The
process events are converted to a discrete-time signal in the
polar space. We learn local patterns that occur in the data and
then learn the normal co-occurrence relationships between the
patterns. The patterns and the co-occurrence relations model
the normal behavioral baseline of an application. We compute
an anomaly score for tested traces and compare it against a
threshold for anomaly detection. We evaluate the baseline by
experimenting with its ability to discriminate between different
processes and detect malicious behavior.

Index Terms—anomaly detection, behavioral baseline, intru-
sion detection system, intrusion resilience, kernel monitoring

I. INTRODUCTION

As today’s computers are involved in every aspect of our
lives, they are attractive targets for attacks. These attacks
are no longer limited to cyber assets, but also extend to
the systems they control, which raises the need for proper
and secure protection mechanisms. Hardware- and software-
based mechanisms such as access control [1], sandboxing, and
protection rings [2] have been deployed to address security
threats. Even with such protections in place, compromises are
still inevitable, because vulnerable software offers entry points
for penetration. In effect, attackers and defenders are locked
in an arms race; for example, modern firewalls, intrusion de-
tection systems (IDSes), and anti-virus software must always
be kept up to date to face ever-evolving malware [3], [4].

In that arms race, it is prudent to build several layers of
protection to make systems more resilient to intrusions. Intru-
sion resilience [5], inspired by fault tolerance, aims to build
systems that can maintain their mission despite compromises.
An intrusion-resilient protection mechanism is one that em-
ploys a strategy of continuous monitoring and response. The
protection mechanism reacts to changes in the security state
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by reconfiguring the system while maintaining an acceptable
service level.

Intrusion detection, through either anomaly detection (for
unknown attacks) or signature detection (for known attacks),
is often deployed as the monitoring component of resilience
strategies. Unfortunately, intrusion detection systems are noto-
riously noisy (with a high rate of false positives), which over-
whelms both operators and decision algorithms [6], making
them the Achilles heel of resilience strategies.

Still, anomaly detection is the most effective strategy against
unknown attacks. State-of-the-art black-box anomaly detection
systems (see Section VII) in modern OSes rely on execution
traces of running processes [7] as an alphabet to detect
anomalous subsequences. Anomalies are detected when events
co-occur in a manner different from normal. This approach
is particularly effective in detecting arbitrary code execution
attacks, unauthorized behavior, and other policy violations that
change a running process without modifying binaries; such
attacks defeat signature-based mechanisms.

However, most behavior traces proposed in the literature use
an alphabet that is hard to collect in most modern operating
systems (such as system calls, and function calls). Since
intrusion detection systems run as independent processes in
OSes, their developers resort to modifying the kernel by
overwriting the addresses of functions in order to intercept
the events from other running processes. Ironically, attackers
utilize the same techniques in developing rootkits [8]. As a
result, modern operating systems include several mechanisms
to prevent tampering with kernel data structures (such as
Kernel Patch Protection in Windows) [9]. Those protections
make it impossible for intrusion detection systems to collect
system calls without tampering with the security of the system
being protected; this creates a gap in host-based security
protection. Therefore, there is a need for host-based intrusion
detection systems that are practical and safe to deploy. In
this paper, we address the following related question: can we
utilize available information in the operating system, without
modifying its internals to achieve accurate anomaly detection?

During an attack, an application’s behavior deviates from
its normal behavior, which can be modeled as a baseline.
There are two challenges in modeling behavioral baselines:
(1) deciding on the data sources to monitor, and (2) extracting
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Fig. 1. High-level description of our approach.

features from said data. First, models extracted from low-level
data (e.g., network usage patterns) might not be discriminating,
while models with high-level data (e.g., system calls and
function calls) are costly to build and maintain and might
not be accurate because of their high dimensionality. Second,
feature extraction involves projection of the collected data onto
a vector space basis. The selected features should reveal the
subtleties in behavior that enable anomaly detection.

Figure 1 shows KOBRA, our practical kernel semi-
supervised anomaly detection system that we developed for
Microsoft’s Windows operating systems (Windows 7+). To
address the first challenge, we focus solely on the low-level
information exposed by the kernal via public filters and APIs,
without requiring instrumenting or “hacking” of the kernel. We
observe that much of this information, such as network and file
system usage patterns, evolves over time, and thereby provides
a high-fidelity feature set that may be used to uniquely identify
running applications and variations thereof. In particular, we
found that we can build accurate behavioral baselines to detect
anomalous process behavior due to arbitrary code execution
attacks.

We collect information from the kernel using KOBRA.
KOBRA filters the data by application to create per-application
event traces. We transform each trace into a complex-valued
discrete-time signal by mapping discrete events onto the z-
plane, as explained in Section III-A.

Instead of explicitly specifying the vector set of basis
vectors(features), we address the second challenge by learning
the set of basis vectors using a training set of normal behav-
ioral traces. The training set is constructed using overlapping
subsequences that are obtained by sliding a window over the
transformed time signal. We use a sparse dictionary-learning
algorithm to learn local patterns in the data. Then we learn
a second set of basis vectors using latent semantic analysis;
these vectors encode co-occurrence relations between local
patterns in the training data. We compute an anomaly score as
the reconstruction error when approximating the data using
the learned set of basis vectors. Normal behavior will be
accurately represented when projected onto the learned set
of basis vectors; anomalies, which occur in different patterns
from normal behavior, cannot be accurately represented and
thus will lead to high anomaly score.

In this paper, we evaluate the effectiveness of the learned be-

havioral baselines for anomaly detection. We consider process-
execution-hijacking attacks over a wide range of applications,
such as the VLC player. Process hijacking is a technique
used by malware to perform malicious tasks without having
persistent processes that can easily be detected. Our study
shows that the learned baselines for different applications
did not share similar local patterns, confirming that they
are suitable for modeling application behavior. Moreover, we
evaluated the effectiveness against attacks by weaving attack
data into normal behavioral traces. We considered two types
of shellcode attacks and the detection accuracy was around
95% with a low false positive rate. Finally, we evaluated the
performance of KOBRA for data collection and online anomaly
detection; in general we observed low overhead during the data
collection phase, and the system was stable for online anomaly
detection.

In summary, the contributions of this paper are as follows:
• KOBRA, a Windows kernel-monitoring engine and an

online anomaly engine that collects events correlated with
running processes;

• A novel transformation from discrete event traces to a
complex-valued discrete-time signal, and

• A method utilizing sparse representation and latent se-
mantic analysis to baseline application behavior and
detect anomalous behavior.

The remainder of this paper is organized as follows. Sec-
tion II highlights the kernel events that are collected by KO-
BRA; Section III introduces our transformation from KOBRA
traces to time signals and dictionary learning; Section IV
evaluates the accuracy of our baselines; Section V describes
the implementation of KOBRA; Section VI highlights the
assumptions and limitations of our approach; Section VII
describes related work in anomaly detection and kernel mon-
itoring; and Section VIII provides concluding remarks and
plans for future work.

II. DATA COLLECTION

We developed KOBRA as a kernel-monitoring engine with
realistic monitoring capabilities for modern operating systems.
The engine collects process behavior from the kernel without
any modifications to the kernel or the processes. The process
behavior includes network operations, file operations, pipe
communication, and process creation events. Processes are
labeled with unique IDs. Events from each process are tagged
with a timestamp and stored as a data stream.

A data stream is a sequence of events that represents the
observed process behavior over time. Formally, an event is a
pair of an ID and a time of occurrence, et = (E, t), where
t ∈ N and ID ∈ E , the universe of all process events. The
event sequence is a totally ordered set of events (E,<), where
E is the set of events E = (e1, e2, e3, . . .), and ei < ej
if ei.t < ej .t. Table I shows the types of events we are
currently collecting. A process creation event is a fork event
for which KID is a unique process identifier assigned by
KOBRA. Network events are either connect events or send
and receive events for which IP is the remote address. The



TABLE I
LIST OF POSSIBLE EVENTS IN A HOST.

Type Event Event

Process Create {KID} {devos:proc} {name}

Network
Connect {IP} {net:remote}
Send {KID-IP} {net:send} {size}
Receive {KID-IP} {net:recv} {size}

Storage
New {FID} {devos:file}
Read {KID-FID} {devos:read} {size}
Write {KID-FID} {devos:write} {size}

send/receive events are tagged with the buffer size. Storage
events are those that manipulate files. They include opening of
a new file, and read and write events. The read/write events are
tagged by the buffer size and by the FID, a unique file identifier
assigned by KOBRA. Each event is tagged by the process that
caused it. KOBRA outputs a data stream for analysis (training
and behavioral baselining) and data logging. Section IV-C
evaluates the overhead caused by the data collection. Section V
contains implementation details of KOBRA.

In this section, we described the events collected by KOBRA.
In the next section, we specify how we process the data stream
and convert it to a complex-valued discrete-time signal. The
signal is used to learn the behavioral baselines of applications
for anomaly detection.

III. DATA ANALYSIS

KOBRA generates a stream of data due to process behavior.
We use the normal behavior data to learn a baseline for
anomaly detection. We start by transforming the data stream
into a complex-valued discrete-time signal. Specifically, each
event is transformed into a complex number, and the sequence
of time-stamped complex numbers generates the discrete-time
signal. Then we construct a training set from collected normal
behavior traces. We use the training set to learn a behavioral
baseline by constructing a sparse representation dictionary.
Then we use sparse representations of the training set to
construct latent semantic analysis (LSA) matrices. Both the
dictionary and LSA matrices represent a process’s normal
behavior. Finally, the anomaly detection algorithm computes
an anomaly score using the sparse reconstruction error and
LSA reconstruction error. Detection thresholds are assigned
as the 90th percentile of the anomaly scores of the normal
data.

A. Data Stream to Complex-Signal Transformation

We transform KOBRA’s data stream into a time signal
for analysis. First, we divide the stream into per-process/per-
application traces using a process tag in each event. Next, we
convert each event in a trace to a complex-valued number.
Finally, we combine the complex values to form a discrete-
time signal.

We start by dividing the data stream by application to
generate per-application traces, Figure 2 shows part of a VLC

trace. Events are tagged by the unique KOBRA Identifier (KID)
and application ID to identify the running process and the
application, respectively. (Each application might have more
than one running process.)

The event-to-complex-value transformation was inspired by
constellation diagrams in digital modulation schemes. The
basic idea is to map discrete events to the complex space,
f : e → x, e ∈ E , x ∈ C. Equations 1 and 2 compute the
phase and magnitude of the transformed event respectively.
The complex plane is divided into N equal angular zones,
where N is the number of types of events (in our example,
N = 4); each type of event is mapped to a zone. In equation 1,
z is a function that maps an event type to the appropriate zone
z : e → k, e ∈ E , k ∈ [0, N − 1] as defined in Figure 3b.
e.Obj.ID is a counter assigned to each unique instance of an
object (file or IP). The phase of each event within each zone
is assigned according to the total number of unique instances.
In equation 2, the magnitude of each number (e.Obj.size) is
the normalized size of the magnitude of the event (number of
bytes transferred) per region.

∠f(e) =
(

e.Obj.ID
maxx∈E x.Obj.ID

+ z(e.ID)
)
× 2π

N (1)

|f(e)| = e.Obj.size
maxx∈E x.Obj.size

(2)

We transform the trace into a complex-valued signal by
transforming each event, e, into a complex value such that
θ = ∠f(e) and r = |f(e)|, and then assigning the value
to the appropriate position in the complex-valued signal (tr)
tr[e.t] = r.exp(j.θ).

The zone mapping allows us to fuse heterogeneous sources
of data into one signal. Figure 3 shows an example of
the transformation; the plot shows the complex-time signal
with the time domain collapsed. Each data point is plot-
ted on the z-plane. We compare the events extracted from
explorer.exe (blue ◦) and the Apache server (orange
•). The Apache server’s behavior has high activity in the
network zones (more biased to the send zone); in this instance
WordPress is using MySQL for data storage. On the other
hand, explorer.exe has more activity in the file read zone
(as it is the file browser).

Traditionally, anomaly detection systems encode events as
a sequence of integers. Those encodings remove essential
timing information and other semantics that are important for
behavioral analysis, while our complex time signal preserves
them. The semantics and timing reflect the behavior of the
application (functionality) and implementation details (buffer
sizes, sleep intervals, etc.). By keeping the semantics, we
protect our anomaly detection method against mimicry attacks
that only change function call parameters [10]. Moreover,
even though the transformation is lossy, it preserves important
frequency information that helps in baselining processes’
behavior. Our anomaly detection algorithms will exploit the
information in the signals to learn the behavioral baselines.

Given a set of normal behavior traces of an application
Y = {tr[k]}i, we construct the training set by applying a
sliding window over the time signals. By using overlapping



...
870 {"VID.mp4" :?: 2044}{devos:read} {512}
895 {"VID.mp4" :?: 2044}{devos:read} {512}
923 {"VID.mp4" :?: 2044}{devos:read} {4096}
...

Fig. 2. Data stream output while VLC is playing a video. The output shows
VLC reading the video file over time. The first column is the timestamp; the
second column is the filename and the process ID; the third column is the
type of operation (a file read); and the last column is the buffer size. 2044
is the ID of the process running the player. The file path and timestamp are
truncated to fit in the column.

(a)

z Event Range

0 Read File [0 , π2 ]
1 Write File [π , 3π

2 ]
2 Net. Recv. [π2 , π]
3 Net. Send [ 3π2 , 2π]

(b)

Fig. 3. (a) Time-collapsed representation of execution of explorer.exe
(blue ◦) and Apache server (orange •). (b) The angular zones used for this
representation.

subsequences, we alleviate the issue of time shifts in the
signal. Specifically, the training set is constructed by running
a sliding window on each trace tri[.] to obtain overlapping
subsequences,

T S(i) =
(
ts

(i)
1 , . . . , ts(i)n

)
,

where ts(i)k is a subset of the trace tri[.] that spans n points (the
window size) ts(i)k = (tri[k], . . . , tri[k + n]). The training set
is a concatenated set of overlapping subsequences arranged
in a matrix with n columns. Figure 4 shows a HeatMap of
the training set from Chromium and VLC; it is easy to see
the difference between the patterns emerging from the two
datasets. Those patterns will be learned by the behavioral
baselines.

B. Learning Sparse Representation

The output of the transformation is a time signal that we
want to sparsely represent to detect local patterns. Sparse
approximation assumes that an input signal y ∈ Rn can be
described in terms of an overcomplete linear system.

y ≈ Dx, (3)

where D ∈ Rn×p (n� p) is called the dictionary and x ∈ Rp
is the sparse approximation. The recovery of a sparse approx-
imation problem is represented as an optimization problem.

x∗ = arg min
x
‖y − Dx‖22 s.t. ‖x‖0 ≤ T (4)
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Fig. 4. The HeatMaps of the training sets for VLC and Chromium.

In this optimization, we want to find the representation that
minimizes the approximation error ‖y −Dx‖2;The minimiza-
tion is subject to the number of nonzero elements in the
approximation T , referred to as sparsity. The pseudonorm
`0, ‖·‖0, counts the number of zero elements in the vector.
We typically want T � p. Equation 4 is a combinatorial
optimization problem; researchers have proposed sub-optimal
greedy algorithms to solve the problem. In this paper, we use
the Orthogonal Matching Pursuit (OMP) algorithm [11].The
atoms of a dictionary, are set of basis vectors of a space,
are the local patterns. The sparse representation of a signal
is the decomposition of this space onto those atoms. Thus, the
dictionary choice affects the resulting sparse representations.
In this work, we are interested in choosing a dictionary with
atoms specifically designed for normal behavior traces. That is,
we seek atoms that represent unique local patterns that exist
in the data. For that purpose, we learn the dictionary using
K-SVD [12]. K-SVD is an algorithm that iteratively learns a
dictionary by solving the problem in equation 5.

D∗ = arg min
D

N∑
i=1

min
{
‖Dxi − yi‖2 + λ ‖xi‖1

}
(5)

The set of training data has to be large enough for K-
SVD to learn normal local patterns. The learned dictionary
D∗ is used for testing new data for anomalies. The sparse
representation of the training data, XT R, is used for semantic
analysis to learn the normal co-occurrence relationships using
latent semantic analysis.

C. Learning Co-occurrence Relationships

The next step is to learn co-occurrence relations between
local patterns in the signal. We use latent semantic analysis
(LSA), a dimensionality reduction method used in NLP. In
LSA for NPL, a term matrix is decomposed and approximated.
The term matrix is matrix that counts the frequency of words
(from a corpus) in documents to be studied. The sparse
representation of a vector similarly assigns frequencies of
local patterns in the subset to be studied. In that sense, words
in the corpus and local patterns are equivalent. The sparse
representation vectors of the training data are arranged in a
matrix X∗. LSA is performed using the following steps:



1) Factorize the sparse representation matrix of the training
data using Singular Value Decomposition (SVD) X∗ =
UΣV T .

2) Approximate the matrix decomposition by keeping the
eigenvectors of the k-largest eigenvalues in Σ such that
X∗ = UkΣkV

T
k .

3) Transform to a lower dimension x̂ = Σ−1k UTk x.
4) Reconstruct the sparse representation x̃ = UkΣkx̂.

The decomposition matrices, Uk and Σk, are the co-occurrence
baseline for the application. The anomaly score is computed
as (x− x̃)2, which is the reconstruction error due to the latent
semantic analysis. If the behavioral traces are anomalous (not
part of the normal trace), the relationships within the traces
cannot be represented, and thus will have a high reconstruction
error.

D. Behavioral Baseline for Anomaly Detection

We learned the per-application normal behavior model
using sparse representation and latent semantic analysis <
D∗,Σk, Uk >. Our behavioral model learns two modes: (1)
local patterns and (2) co-occurrence of the local patterns in
the normal behavior trace. The local patterns are extracted by
learning a sparse representation dictionary using K-SVD. The
sparse representations of the reference signal are used to learn
a co-occurrence model of the normal behavior relative to the
local patterns using LSA. The detector will use both modes in
the behavior model for detection of anomalies. The detector
uses the modes in two stages to detect anomalies. In the first
stage, the sparse representation of input signal y is constructed
using the learned dictionary x̂ = arg minx |D∗x − y|; if the
sparse reconstruction error (SRE) |y−D∗x∗|2 is higher than a
threshold λSRE then an alert is issued. In that case, the normal
local patterns could not effectively represent the behavior
being tested, and thus, the behavior is marked as an anomaly.
However, if the SRE is below the threshold then the latent
semantic representation of the sparse representation vector x∗

is computed, x̃∗ = UkΣkx
∗. The latent reconstruction error

(LSE) is computed as |x∗ − x̃∗|2. An alert is issued if the
LSE is greater than a threshold λLSE . The two-stage process
is used to avoid expensive computations; if the SRE is high,
then we do not need to compute the LSE. The thresholds are
selected as a function of the SRE and the LSE of the training
data. Algorithm 1 lists the procedure for anomaly detection
using behavioral baseline < D∗,Σk, Uk > for any application
trace x.

This section described the method used to transform a graph
stream into complex-valued discrete-time signal. It introduced
the behavioral baseline as a learned dictionary for sparse
representation and the anomaly detection method. In the
next section, we evaluate the effectiveness of the behavioral
baselines in detecting anomalies.

IV. EVALUATION

In this section, we describe our strategy for evaluating
anomaly detection using the behavioral baselines. We started
by collecting data from different applications; then we wove

Algorithm 1 Anomaly detection procedure using LSE
1) Given x a subsequence of a behavior trace for applica-

tion A1 with baseline (DA1 ,Σk, Uk)
2) Compute the sparse representation using OMP as y∗ =

arg miny ‖DA1y − x‖2st‖y‖0 ≤ T
3) Compute the sparse reconstruction error (SRE) as

δSRE = ‖DA1y
∗ − x‖2

4) Compute the latent semantic representation x̂ = Σ−1k UTk
5) Compute the latent semantic error (LSE) δLSE =
‖UkΣkx̂− x‖2

6) Check δSRE ≥ λSRE and δLSE ≥ λLSE

attack traces into normal behavior and computed the detection
rates of the anomaly detection method. Our objectives were
to verify the following: (O1) that the learned local patterns
and co-occurrence relations are unique to each application,
and (O2) that use of the baselines is capable of detecting
anomalous behavior including malicious behavior. We devised
multiple experiments to evaluate the baselines.

In Experiment set 1, we collected normal behavioral traces
from different applications, and then learned the baselines for
all the applications. We compared the similarities between
baselines and the level of effectiveness in discriminating be-
tween the applications. In Experiment set 2, we evaluated the
ability of the baselines to detect malicious behavior. We wove
attack behavior into the behavior trace of one application.

In the following we explain our experiments and the results.
Finally, we study the performance overhead of KOBRA.

A. Experiment 1: Comparing Applications and Baselines

In the first set of experiments, we wanted to verify that
the learned behavioral baselines are unique for each applica-
tion. For this purpose, we collected behavioral information
for multiple applications using KOBRA. Then we learned
the behavioral baselines of the application, and finally we
tested the effectiveness of the anomaly score in discriminating
between applications. We selected the following applications
for training:
VLC: We obtained 20 VLC (version 2.2.1) execution traces

by playing local videos of various lengths and formats.
Web server: We set up Apache (version 2.4.9) with php

and MySQL (version 5.6.17). The Web server has a
set of files for download and a web blog application
(WordPress). We performed a stress test on the Web
server by sending it random requests with a varying rate.
The timing distribution followed a Poison process with
rate λ = 20. The requested content was drawn from a
uniform distribution over the index of all accessible data.
We ran the tests for 4 hours.

OS Processes: We scraped the traces generated by KO-
BRA in the VLC and Web server setups for behavior
traces generated by running Windows processes, includ-
ing svchost.exe and explorer.exe. Most appli-
cations run in different modes; for example, VLC can
be used to stream video or play local files. In this work,
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Fig. 5. Similarity between behavioral baselines for different parameters.

we learned a behavioral baseline per mode of operation.
The mode of operation is to be detected by finding the
baseline that has the lowest anomaly score.

For each application, we assembled the training set in a
matrix with a sliding window of size n = 32. We learned the
behavioral baseline of each application using the method we
highlighted. We set the number of local patterns to m = 180,
the sparsity to T = 5, and the LSA approximation to k = 30.

1) Comparing Baselines: A good discriminating baseline
bears the least similarity to other baselines (that describe other
behaviors), as it should have learned unique local patterns
pertaining to the application. We define the similarity between
two sparse representation dictionaries δ(Di,Dj) as the min-
imum distance separating the local patterns (atoms) of each
dictionary.

δij = min
DiDj

‖da − db‖2 ∀a, b ≤ m (6)

where da and db are local patterns in Di and Dj , respectively.
Our similarity metric is a conservative metric: just one similar
set of local patterns would lead us to consider the dictionaries
similar. We trained dictionaries for all the profiled applications,
while varying the sparsity (sp), number of local patterns to be
learned (m), and number of iterations (k). Then, we computed
δij for all pairs of dictionaries. We consider dictionaries with
δij ≤ 0.01 similar. Figure 5 shows the similarity measure
between the dictionaries; each element < i, j > in the result
matrix represents the distance measure δij . If the distance is
more than 0.01, the cell is filled with a white color; otherwise,
it is filled in black. The diagonal is white as it refers to δii
as it compares a dictionary to itself. Most of the elements in
the result matrix are black, and thus the learned baselines are
different. We used the learned baselines for the rest of the
experiments.

2) Comparing Execution Traces: For each application we
picked a behavioral trace and computed the anomaly score
(LSE) against all the behavioral baselines. For detection we
compared the anomaly score to the 95th percentile threshold
(λLSE) from the training data. Figure 6 shows a sample
of the LSE anomaly scores of mysql.exe compared to
the behavior of vlc.exe using the behavioral baseline of
vlc.exe. The error of the mysql.exe behavior trace is
consistently greater than that of vlc.exe. The red reference
line in the plot is the detection cutoff. For each behavior
baseline we average the true positive and the false positives of
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Fig. 6. The SRE anomaly score for mysql.exe compared to vlc.exe
using the vlc.exe behavioral baseline.

TABLE II
COMPARING EXECUTION TRACES

Application True Positive False Positive

vlc.exe 0.9917 0.0483
svchost.exe 0.9932 0.115

explorer.exe 0.9482 0.0076
httpd 0.7966 0.0468

mysqld 0.6425 0.0514

detection against all the application traces. Table II shows the
true positive and the false positives for each application. The
results show a consistently low false positive rate. That is, the
baseline does not mark normal behavior as anomalous. On the
other hand, the detector is capable of accurately discriminating
between applications, with varying degrees. In the case of
mysql, the accuracy is lower than the others; the reason is
that the behavior of a database application has similarities to
that of the other applications.

B. Experiment 2: Injecting Attack Behavior

In the second set of experiments, we wanted to evaluate the
effectiveness of the baselines in detecting anomalous malicious
behavior. We considered two classes of attacks: one-time
arbitrary code execution through shellcodes, and permanent
code injection. Permanent code injection is used to hide mali-
cious activity within “trusted” applications. Malware families
such as Duqu and Dyre use calls such as ZwOpenThread,
ZwQueueApcThread, and ZwCreateSection to inject
malicious code into Windows subsystem processes. The goal
is for KOBRA to be able to detect both permanent and one-
time anomalies. In order to evaluate the anomaly detection,
we wove malicious behavior into normal execution traces of a
process. In the following we explain our weaving process and
show the accuracy of the anomaly detection method.

1) Malicious Behavior Weaving: Given a trace of malicious
(malware) behavior, we wove the behavior trace into a normal
process behavior trace. Weaving of the traces is a reasonable
way to emulate malware behavior within a process, because
the execution of the exploit happens within the compromised
process, and thus the collected trace will reflect the behavior
of the exploit. We do not need to prove that the applications
are vulnerable, as we do not use specific vulnerabilities;
instead, we look at the behavior after the exploit has been
“executed.” Moreover, weaving malicious behavior instead of



Fig. 7. Malware behavior weaving modes

finding vulnerable versions of applications allows the results
to be reproducible by other researchers.

We consider two cases of malicious behavior: takeover and
interleaving. In the firs, malware takes over process execu-
tion by means of shellcode execution, DLL hijacking, and
portable executable (PE) injection into the process image. In
the second, the malicious behavior is interleaved with normal
behavior; the malware achieves this when it adds a thread to
the process execution.

We performed malware weaving by emulating malware
behavior and by extracting behavior traces using KOBRA.
We added the behavior traces of the malware to the normal
behavior of an application. While it might seem that the
insertion point should be restricted to network read events,
the start of malicious behavior might not align with the
network read events, perhaps because of multithreading, for
example. Because of the uncertainty, we selected a random
insertion point and repeated the experiment multiple times
to increase confidence in the result. Finally, we adjusted the
timestamps to be consistent. Weaving was performed before
the transformation to a complex signal.

The malware behavior was either inserted to cause a shift
of normal behavior or interleaved with random periods within
the normal behavior. Figure 7 shows the two weaving modes.
The gray box is the normal behavior, and the red boxes are
the emulated malware behavior.

We studied shellcode behavior in order to assess malicious
behavior. First, we studied common behaviors of shellcodes
by surveying the Exploit Database by Offensive Security [13].
For all of the 500 Windows exploit samples, we extracted and
simulated the binary shellcode using a shellcode debugger,
scdbg [14]. The output of the debugger was the list of service
calls executed. We identified two behaviors to study:
Reverse Shell (RS): An attacker starts a new socket, con-

nects to a remote server, creates a new process for a shell,
and redirects input/output of the new process to the new
socket.

Drive-by-Download (DD): An attacker downloads malware
from a remote server and creates a new process that loads
the downloaded file.

The selected behaviors are by no means an exhaustive list
of possible behaviors, as we cannot predict the behavior of

TABLE III
TRUE POSITIVE RATE AND FALSE POSITIVE (FP) RATES

Reverse Shell (RS) Drive-by-Download (DD)

Application LSE FP Original LSE FP Original
vlc.exe 0.9800 0.0466 0.8635 0.8941 0.0585 0.6342

svchost.exe 0.9687 0.0753 0.9001 0.8620 0.0627 0.8362
explorer.exe 0.9826 0.0480 0.8888 0.9214 0.0791 0.8822

httpd 0.9933 0.0244 0.9068 0.9641 0.0352 0.94
mysqld 0.9800 0.0499 0.9010 0.9272 0.0848 0.8665
System 0.9094 0.1092 0.8511 0.9041 0.0371 0.7890

x̄ 0.969 0.0589 0.8852 0.9121 0.0595 0.8247

an attacker. However, they provide a good starting point for
verifying that attack behavior, unknown to our system (which
has not been trained for), is getting flagged as an anomaly
relative to the learned baseline. Finally, we created custom
implementations of the malicious payloads and ran them on
a KOBRA-instrumented machine, after which we wove the
behavior traces with the applications we wanted to study.
When a shellcode is executed, it might cause a new process to
be forked or the current process to crash. We do not consider
those scenarios, because we are interested in the behavior
change due to the malware in the application itself.

2) Detection Results: In this experiment, we tested whether
that anomaly detection using our learned behavioral baseline is
effective against malicious behavior due to reverse shell (RS)
and drive-by-download (DD). After weaving the malicious
behavior, we computed the anomaly score for each trace and
compared the scores against the thresholds. The threshold is
selected as the 95th percentile of the anomaly scores from
the training data. We compared our results to a kNN classifier
that clusters the original trace information without using the
behavioral baseline transformation. Table III shows the true
positive rates of detection of both reverse shell and drive-
by-download behaviors. For reverse shell behavior, the true
positive rate was higher than 0.90 for all applications, while
the false positive rate was extremely low (≤ 0.07). The false
positive rate is consistent with the threshold we picked, the
95th percentile. The detection method using the untransformed
traces had lower true positive rate in detecting the malicious
behavior. The improvement in detection while having a low
false positive rate is important for a resiliency strategy that
uses alerts for response. For drive-by-download behavior, the
true positive rate was high for all applications (≥ 0.90) with
a low false positive rate. Finally, the detection method using
the untransformed traces had lower true positive rate.

C. KOBRA’s Performance

We tested our current implementation of KOBRA on a
machine running Windows 7. We used a suite of performance
benchmarks [15] to evaluate its logging overhead and online
operation. During logging mode, the benchmarks ran various
CPU, memory, disk, and network tests. The results (Figure 8)
show that KOBRA has negligible overhead; it did not exceed
6% for any of the tests. The results in Figure 8 are divided by
the targeted subsystem: CPU, graphics, memory, and disk. The
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Fig. 8. The overhead due to KOBRA’s operations.

low resulting overhead is not surprising; most of the logging
functionalities are implemented as callbacks and in-line filters,
and the state is updated asynchronously. The 2% network
overhead was due to events streaming to the logging server
at 277 Kbps.

During online detection mode, the detection algorithm runs
with full data collection with logging disabled. That is, KOBRA
does not use network communication, but it does increase
CPU usage. On average, the batch OMP used for sparse
representation runs in 0.12 ms for a batch of 100 signals.
We modeled the per-process online anomaly detection as an
M/M/1 system. The input to the queue was the behavior
trace with 32 elements; the service ran the anomaly detection
algorithm 1. The online system is stable when the service rate
is higher than the arrival rate, λ

µ < 1. Currently, events are
coded in 0.12 ms, and the median arrival time per event is 24
ms. Thus the system is stable and is viable for online operation.

V. KOBRA’S IMPLEMENTATION DETAILS

KOBRA is a kernel-monitoring and anomaly detection en-
gine that collects events via collection modules for learning
behavioral baselines. It computes the anomaly score and uses
algorithm 1 (in Section III-D) to generate an alert when the
score exceeds a threshold. The collection modules parse ker-
nel data structures, implement callbacks, and install network
and file system filters. The data collected are transferred to
the fusion module, which maintains KOBRA’s internal state.
KOBRA (using the communication module) exports the data
to an external logging server for learning. Figure 9 shows
the architecture of KOBRA. We implemented KOBRA as a set
of drivers for Microsoft’s Windows operating system. In this
section, we discuss KOBRA’s implementation details.

KOBRA collects events and data (tagged by the originating
process) from the kernel to instantiate and maintain an internal
state of the host. It employs two strategies for data collection:
events-driven collection, and periodic polling. In event-driven
collection, KOBRA registers functions to notification and call-
back objects in the kernel. These functions asynchronously up-
date the internal state to reduce overhead. For periodic polling,

Fusion Module

NDIS

Filesystem filter

WFP Callouts

KDOM

Comm Module Log Server

Anomaly Detector Alert

Fig. 9. KOBRA’s architecture for logging and anomaly detection.

it uses worker threads to sample time-varying properties, such
as CPU and memory usage. The fusion module maintains a
state of the host using data from the collection modules. The
state is implemented as a dynamic graph which we encode
as a graph stream. Table I lists the events that are currently
streamed by KOBRA.

Our implementation uses only public APIs to collect ker-
nel events. The Windows operating system (64-bit version)
implements kernel patch protection to prevent tampering with
the kernel data structure and code. These protections prevent
hooking of system calls and interrupt handlers. Even though
Kernel Patch Protection (KPP) can be bypassed [9], we limit
our collection components to sources that can be accessed
without tampering with the operating system. Those include
process information, network information, and file system
interactions.

1) Process Information: In order to collect informa-
tion about running processes in the system, we parse the
EPROCESS structure in the kernel. Windows maintains a list
of running processes that contains all the state information
pertaining to each process. We register a callback function to
get notified when a process is created or terminated. For each
process, we compute a secure hash of its image file. The secure
hash, instead of the image file, is used to identify the running
application; we assign to each process a unique random
identifier, KID, instead of using the internal process identifier
(PID), which is likely to be reused by the kernel. Each time a
process is created or terminated, KOBRA emits an event with
a time stamp, KID, parent ID, application ID, and process
name. The timestamp is a high-resolution counter (< 1 µs)
obtained by KeQueryPerformanceCounter. The short
interval between ticks allows KOBRA to keep an order of the
events without using a global synchronized variable.

2) Communication Information: We implemented two ker-
nel components to capture network activities and map the
activity to the processes that perform them. A Network Driver
Interface Specification (NDIS) filter and a set of Windows
Filtering Platform (WFP) kernel callouts listen for incoming
and outgoing packets. The NDIS filter uses the destination
port, IP address, and protocol tuple to keep track of all remote
destinations. The WFP callouts associate a context with each
packet in a network flow. The context is the KID of the process
that initiated the connection. Two types of events are emitted as
a result of communication information: established connection



activities and detailed network activities. Those events, along
with the sizes of the associated communications (in bytes) are
tagged with the remote destination tuples.

3) Storage Information: Storage information is collected by
a file system filter (in the file system stack) that listens to file
open, read, write, and query operations. The file is uniquely
identified by location and name. Each file operation is tagged
by the process that initiated the operation and is added to the
internal state maintained by the fusion module. A file system
filter allows us to capture processes through pipes.

A. Anomaly Detector
The anomaly detector implements Algorithm 1. Learned

application behavioral baselines are stored in memory (loaded
from a file) and indexed by the secure hash of the application’s
image file. The secure hash is used to match the process’s
application with the learned baseline. In step 1, KOBRA
separates the behavior into different traces per process. If
KOBRA is in learning mode, the traces are exported to an
external server. The server learns the behavioral baseline. If
KOBRA is in online detection mode, each event in the trace
is converted to a complex value. In step 2, batched OMP
computes the sparse representation y of a set of the converted
traces x. In step 3, the sparse representation error, δSRE ,
is computed. An alert is issued if δSRE ≥ λSRE , where
λSRE is the 95th percentile of the SRE from the training
data. Otherwise, in step 4, the latent semantic representation
approximation of y is calculated. In step 5, the latent semantic
error, δLSE , is calculated. In step 6, an alert is issued if
δLSE ≥ λLSE , where λLSE is the 95th percentile of the LSE
from the training data.

VI. DISCUSSION

In our transformation, some semantics of operations are lost,
such as file names and IP addresses. Attackers can fake those
semantics, a common pitfall of signature-based approaches
that renders them ineffective. Even though we capture only file
system and network activity, our baselines capture high-level
and subtle behavioral differences in the studied applications.
The high-level differences emerge from the intended purpose
of the application (e.g. a Web server mainly sends network
traffic, or a browser mainly receives traffic). Moreover, our
baselines capture implementation details in an application,
e.g., the size of the buffers used to read files, interleaving
between file and network operations, and thread sleep duration.
Our approach has certain limitations that we plan to study. We
assume that KOBRA is running in a secure manner; while such
assumptions are common for intrusion detection systems, we
plan to study methods to secure KOBRA’s execution or at least
detect tampering with it. Moreover, we currently support one
mode of operation per application; we plan to study methods to
support multiple modes of operation via multiple dictionaries.

VII. RELATED WORK

Anomaly Detection: The techniques for host-based
anomaly detection can be classified according to the collected
data, the extracted features, and the detection methods.

a) Data Collected: Collection of system calls and func-
tion calls in modern operating systems is not possible without
reducing the security stature of the OS [16]. In our work,
instead of extracting a subset of the features in the network
and file activity traces (e.g., bandwidth), we collect continuous
file and network activity and use the whole trace for analysis.
Forest [17], [18] collected system calls; Peiser [19] collected
function calls; Tang et al. [20] collected architectural informa-
tion, e.g., cache misses; Malone et al. [21] collected hardware
performance counters, e.g., INS; and, finally, Gao et al. [22]
collected “gray-box” measurements.

b) Features: After collection, monitoring data features
are extracted for anomaly detection. Several approaches have
been proposed in which data are arranged into: 1) short
sequences with events substituted into natural numbers [17]
(n-grams), 2) frequency and wavelet transformation coeffi-
cients [23], 3) entropy values, or 4) Fisher scores [20]. Selected
features should discriminate between normal and anomalous
behavior. In our work, the features consist of the decompo-
sition of the traces over the learned set of basis vectors, as
opposed to designed features. Thus, our features are always
well-suited for the supplied data.

c) Analysis Method: Finally, the selected features are
used to learn normal behaviors; we refer the readers to the
extensive surveys by Agrawal et al. [24] and Chandola et
al. [25] on anomaly detection. On top of the surveys, some
researchers use Markov models [26], [27] or finite state
machines [28] to learn relationships between operations. Such
methods do not take into account delays and call semantics.
PCA methods have gained popularity [29]. They transform the
data into independent components for clustering; PCA only
considers second-order statistics, unlike to learned dictionaries
which exploit the data beyond variance.

Monitoring Software: Dunlap et al. [30] argue that the
logging capabilities of the kernel are not trustworthy and
moved logging to a hypervisor. They record all events that
occur in a guest including, CPU counters, network messages,
file I/O, and interaction with the peripherals. OSck [31] im-
plements rootkit protection by monitoring kernel integrity. The
trust argument for hypervisor monitoring has been weakened
by multiple compromises from hardware below [32] and
from guest machines above [33]. The semantics gained from
monitoring in the kernel instead of the hypervisor outweighs
the (already weakened) trust argument. OSSEC [34] and
AIDE [35] provide kernel-level monitoring of the registry
and file integrity. These tools do not provide process-tagged
activity for behavior analysis.

VIII. CONCLUSION

We proposed a method to model application behavioral
baselines using practically monitored data from the kernel.
While typical anomaly detection methods assume access to
low-level system calls, in this work, we use file and network
activity captured by KOBRA, a kernel-monitoring and anomaly
detection engine. We propose a novel transformation from
KOBRA’s data to a complex-valued discrete-time signal. The



signals are used to learn a sparse representation dictionary
and a latent semantic analysis transformation that serve as a
behavioral baseline for each application. The generated base-
line captures the uniqueness of an application. Our approach
is effective in detecting simulated attacks with a low false
positive rate. Moreover, KOBRA has low overhead and is
stable for online operation. In the future, we plan to expand
our experiments to study more attack behavior. Moreover,
we plan to study online dictionary learning to help KOBRA
learn baselines. Finally, we plan to design host-level response
mechanisms to work towards intrusion resilience.
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