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ABSTRACT

This paper investigates the potential impacts of load oscillating at-
tacks in a microgrid to the stability of the main power grid. The
adversary is assumed to be able to control switches within compro-
mised smart meters and thus is able to dynamically connect or dis-
connect the corresponding loads within the microgrid. Using the
commercial PSS/e time-domain simulator with the IEEE Reliabil-
ity Test System (RTS-96), we demonstrate the impacts of attacks
cycling the total load of the microgrid. Cycling attacks with differ-
ent load oscillation frequencies and magnitudes are considered. We
found that for certain oscillation frequencies, oscillating 30 percent
of the total microgrid load can significantly harm the main grid sta-
bility.

Index Terms— Smart meter, load oscillating attack, power sys-
tem stability, microgrid

1. INTRODUCTION

The power network is trending towards a smarter and more intelli-
gent entity due to developments in smart grid over the past several
years. These advancements occur at the transmission, distribution,
and consumer levels. Distribution networks have seen a multitude of
developments including communication system upgrades, automa-
tion of distribution elements, load control, and Advanced Metering
Infrastructure (AMI) [1]. With such improvements, the potential to
dynamically control and protect distributed networks becomes more
feasible. Unfortunately with the broadening of said improvements,
new attack surfaces are introduced to the power grid [11]. For in-
stance, attackers may intrude into AMI and manipulate the data or
inject false control data in order to remotely control switches. This
paper focuses on studying whether such attacks launched at a distri-
bution network can affect the main grid stability.

Monitoring of the distribution level has been difficult in the past,
but with the introduction of smart meters in AMI, the ability to dy-
namically track load details becomes possible. Smart meters not
only provide power system operators with real-time information of
individual customer load (e.g., single house load) but also allow op-
erators to remotely control switches in order to connect or discon-
nect individual loads [13]. Such two-way communication creates a
new security concern because compromised smart meters (or com-
promised channels between smart meters and the operators) may not
only cause the leak of measurements, but also allow the adversary to
connect or disconnect the corresponding customer loads [2].

There have been reported successful hacking of smart meters al-
lowing one to sniff data or even inject commands into the device.
The ability to control the devices and shut down power is a real pos-
sibility and may have harmful outcomes pertaining to wide grid sta-
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bility [6]. The diverse ways to hack smart meters could be as simple
as reverse engineering one or using software radio programmed to
mimic communication devices to learn how to communicate with
the meter. Compromised meters could be used to spread malware
to other smart meters allowing easier accessibility for smart meter
based attacks for adversaries [5]. The spreading of software with
malicious intent has already been tested and successfully carried out
by researchers in which a worm was created and traveled through
other meters [9]. As a result, it is possible that a few compromised
smart meters could lead to a large network of compromised meters.

Such security risks of meters are becoming more concerning due
to the deployment of such systems outpacing security efforts [10].
Such deployments stem from sources such as the Smart Grid Re-
covery Act in which $4.5 billion dollars were directed toward mod-
ernizing the power grid. These changes are occurring very quickly.
In 2014, the U.S. had 58,545,938 AMI installations with 88% being
residential customer installations [3]. It is expected that the number
of smart meters installed worldwide will grow from 313 million, in
2013, to nearly 1.1 billion in 2022 [12]. With the rapid growth of
such network based systems and lack of research on such security
risks, major consequences may occur from compromised systems.

The immediate thought of smart meter attacks would seem to
be price fraud in which meters are tampered with allowing setting
changes. In 2009 many reports of such fraud were reported in Puerto
Rico where utility employees changed meter settings such that cus-
tomers were charged less [5]. Main security research in regards to
smart meters have focused on privacy or fraud, however more in-
telligent based attacks could create more serious consequences, e.g.,
disrupting control of power grid [4]. Other attacks may rely on os-
cillating portions of the grid to disrupt power delivery. Such attacks
have been developed and tested on small test cases as seen in [7],
[8]. These coordinated attacks may have significant impact on grid
stability depending on the source of said switching.

In this paper, we focus on attacks that exploit compromised
smart meters in order to introduce load oscillation within a single
microgrid. In general, perturbation at a distribution level is con-
sidered to have a negligible impact and is ignored in the main grid
control. The potential impacts of elaborately designed perturbation
at a distribution level on the main grid stability have not been well
understood. This paper aims to fill this gap by providing case studies
with load oscillating attacks.

2. ATTACK MODEL

In this paper, we consider an adversary who compromised a sub-
set of smart meters within a microgrid and is capable of controlling
switches associated with them. A straightforward attack could in-
volve a one time dropping of the entire adversarial load, however
this may not capture the worst case result as the network may recover
from the single instance as opposed to a more intelligent attack.

With a more intricate attack, an adversary may choose to cycle

Author copy. Do not redistribute.



loads to confuse the system and create potential problems with pro-
tective device operation. In this case, the cycling would pertain to
actual load manipulation, not just the meter readings. With a cycling
attack, the adversary may control loads and switch them on and off
at a frequency potentially harmful to the network. With such an at-
tack, network convergence issues may result from component stress
or protective schemes occurring to aid in the current cycled state
whilst being detrimental to the next cycled state. Consistent cycling
may result in compounded consequences leading to instability. As
a result, this attack would change the actual operating point of the
network.

We modeled such an attack in a microgrid setting. With the
RTS-96 case [14], we assumed the third zone to be our microgrid.
We set up an attack model by choosing all loads in the microgrid to
be susceptible to attacks. All initial load models on buses are split
into 10 individual feeder representations with identical values. We
choose the amount of load the microgrid may cycle and pick adver-
sarial feeders for each bus based on this information. For example, if
we allow 50 % of the total microgrid load to be cycled, we represent
this by cycling 5 adversarial feeders at each bus in the microgrid.
The adversarial feeders for each bus are chosen at random and in-
dependently to ensure diversity. We perform attacks that vary in the
set of adversarial feeders, the cycling frequency, and the attack dura-
tion. This attack is performed when the microgrid is interconnected
to the main grid to determine the impact of load oscillation within
the microgrid on the main grid.

0%

20%

40%

60%

80%

100%

120%

0 20 40 60 80 100 120

Lo
a

d
 P

e
rc

e
n

t

Time (s)

Load Cycling Attack

Fig. 1. Example microgrid attack cycling half of the load

An example attack on the microgrid is shown in Figure 1. This
attack controls 50 % of the microgrid load and cycles them at a fre-
quency of 0.05 Hz. The attack lasts for 100 seconds with loads os-
cillating from 50 % to 100 % of the microgrid load. It is important to
note that the absolute total load of the grid may decrease as the attack
goes on because some uncompromised feeders can be disconnected
due the protective scheme triggered by load oscillation.

For clarity, an example is described and the expected outcomes
are discussed. We use the attack seen in Figure 1. The network be-
gins with the main grid and microgrid interconnected and operating
at the precomputed steady state. At 5 seconds the adversarial loads
are switched off in the microgrid leading to only 50 % of the micro-
grid load remaining. The network will then be exposed to transients
and attempt to converge to a new stable point of operation. Relays
will operate if their thresholds are exceeded for a pre-set time. These
relays are discussed in more detail in Section 3. Relay operation may
result in load shedding, line tripping, or machine tripping. The attack
will then restore the adversarial loads at 15 seconds. It is important
to note that the load shedding from the protection scheme does not

discern between adversarial and non-adversarial feeders. The load
shedding may shed adversarial load even when it has been switched
off. As a result, when an adversarial load is restored, it may no longer
be served. The attack may then decrease in magnitude as adversarial
load is shed throughout the attack period.

3. METHODOLOGY

A commercial dynamics simulator, PSS/e, was used to conduct ex-
periments on the RTS-96 case. Due to the RTS-96 case being a set
of three identical networks with two extra buses for interconnection
of said zones, we selected the third zone to represent our makeshift
microgrid. In order to adequately represent the the individual loads
and the associated feeders at a distribution level, we broke each load
model presented in the test case into 10 identical individual loads,
each of which is connected to the substation by a different feeder.
An example would be a 100 MW, 10 Mvar load on a certain bus.
The load is broken into ten loads each with values of 10 MW and 1
Mvar.

In order to represent adequate cycling behavior, we allowed
feeders to be either adversarial or non-adversarial. We first select the
amount of load we wish to cycle in the microgrid, we then use this to
determine how many adversarial feeders exist per bus. The represen-
tation was as follows: If we were to cycle load from between 40%
and 100% of the total load, each bus in the microgrid would have 4
non-adversarial feeders and 6 adversarial feeders. It was important
to create diversity throughout the case, thus we chose the adversarial
feeders at each bus uniformly at random and independently. For
each amount of load we cycle, we choose the adversaries at each
bus as we stated before. For simulations using the same amount of
load cycling, we use the same distribution of adversaries throughout
the microgrid; this is to ensure that the same amount of load being
cycled at different frequencies will result in different behavior due
to this change in frequency, not due to the change of adversarial
locations.

Dynamics were implemented in the case by using salient gener-
ator models along with the IEEE type 1 exciter and IEEE type 2 gov-
ernor. Protective relays were also built for the case which included
overcurrent line relays, undervoltage + underfrequency bus relays,
and underfrequency machine relays. The initial pickup points for
overcurrent line relays were synthesized by running the steady state
solution and using the line currents at hand. The relay pickup time
was chosen to be 140 % of the operating current in the steady state
with a zero reset time of 5 seconds. Line relays would trip the as-
sociated branches if they timed out during operation. Table 1 shows
the other setpoints for the line relays.

Table 1. Different operating points for overcurrent relays
Percent of Pickup Trip Time (s)

Point 1 100 % 5

Point 2 120 % 0.2

Point 3 140 % 0.15

Point 4 160 % 0.1

Point 5 180 % 0.05

Point 6 200 % 0

Undervoltage and underfrequency load shedding protection was
produced by placing relays at each feeder previously created. For



the ten feeders per bus, five different setpoints were created to repre-
sent 20 % load shedding at a bus per setpoint; these are shown below
in Table 2. In order to create variability in load sheds pertaining to
frequency, we introduced four different types of setpoints that rep-
resent time until load shed. The time until operation for frequency
points is a set value divided by a random variable, x, that can take
on a value of 1, 2, 3, or 4. The relays for the ten feeders in the same
bus shared the same value of x. This allows more diversity across
bus relay configuration ensuring not all loads are shed at once due
to common frequencies in smaller islands. Voltage points do not
need such variability as their voltages differ enough throughout the
network.

Table 2. Undervoltage/Underfrequency load shedding relays oper-
ating points

Volt Pickup Trip (s) Freq Pickup (Hz) Trip (s)

Pt 1 0.88 P.U. 3 59 4/x

Pt 2 0.85 P.U. 1 58.5 2/x

Pt 3 0.80 P.U. 0.5 58 1/x

Pt 4 0.75 P.U. 0.25 57.5 0.5/x

Pt 5 0.70 P.U. 0.1 57 0.25/x

A similar technique for machine relaying was used to ensure di-
verse frequency trips. We attach three underfrequency trip points for
each machine in the case and introduce random time trips as shown
in Table 3. We use a random variable, y, that can take on values of
1, 2, or 3.

Table 3. Points of operation for generator protection relays
Frequency Pickup (Hz) Time Until Trip (s)

Point 1 58.5 y

Point 2 57.5 y/2

Point 3 56 y/4

As stated earlier, a feeder can be adversarial or not. The protec-
tive scheme is setup such that adversarial loads may be shed even
when cycled off. This adequately models an operator shedding a
feeder during protective actions even if the feeder has been com-
pletely shut off by an adversary. We assume that the operator does
not know the exact distribution of load on the bus, thus feeders are
shed according the the predesigned protection schemes.

4. RESULTS

We performed tests on the RTS-96 case by allowing all buses in the
microgrid to have a number of adversarial feeders. We tested on
cases that cycled 30 %, 50 %, and 80 % of the microgrid load. We
also cycled each attack at frequencies of 0.05 Hz, 0.1 Hz, 0.5 Hz, and
1 Hz. Attacks lasted for 100 seconds with the simulation terminating
75 seconds after the attacks end.

Interestingly, we observed that the oscillation of more load in
the microgrid did not always correspond to the worst outcome; in
fact we found that oscillating from 70 % to 100 % of the loads (i.e.,
cycling 30% of the microgrid load) at 0.1 Hz in the microgrid caused
a major loss in load, machines, buses and branches. Table 4 shows
the remaining load after attacks lasted for 100 seconds.

The loads remaining are those that exist at stable islands after an
attack occurs. Unstable islands are either directly disconnected due
to protection or not counted as served if the island has not converged
upon termination of the case. Similar behavior can be seen with the
remaining machines after attacks shown by Table 4.

Normally high frequency-oscillation of feeders did not adversely
effect machine tripping too much. We saw that low amplitude oscil-
lation did not always result in less machine tripping. The cycling
of half the loads seems to result in fewer machines tripping than cy-
cling either 80 % or 30 %. We also observe a similar story for the
remaining branches/transformers after each attack.

In Table 4, we track remaining load after an attack along with
machines (generation), and branches (in service two winding trans-
formers and bus tie lines). The remaining branches after attacks
seem highly correlated with the remaining machines in the case.
We see that the cycling of 50 % of microgrid loads results in less
machine trips on average through differing frequency attacks. The
remaining branches and transformers only represent ones that exist
in stable islands upon completion of a test case. Normally high-
frequency load oscillation caused only a small fraction of machines
and branches to trip, however lower frequency coupled with high or
low load oscillation removed a large portion of branches and trans-
formers in the working case.

We also observe how many buses were lost after an attack ended
in Table 4. The number of lost buses came from two different scenar-
ios. The first cause was due to protective line tripping which isolated
buses into separate islands. If an island were to lose all machines,
the buses are set out of service due to the inability to serve as an ac-
tive portion of the case. The other cause is due to islanding, however
the island becomes unstable before losing all generation. If an island
becomes unstable and reaches a point in which it cannot converge,
the entire island is set out of service. The least number of buses
that are disconnected come from a high frequency-oscillation, low
amplitude-oscillation attack. We observe cycling half of the load in
the microgrid seems to have less variability in terms of all param-
eters shown in Table 4 with respect to frequency, whilst frequency
has a big impact on cycling 30% and 80% of the load. The worst
case scenario again results from oscillating 30 % of the load at a
frequency of 0.1 Hz.

One major result that was not immediately expected was the
large impact small oscillations of load could cause as opposed to
medium oscillations. The worst performance outcome was found
when cycling only 30 % of the load at 0.1 Hz. We found that low
amplitude oscillation allowed the perturbation to be felt by a large
portion of the grid before protective islanding isolated the attack.
As a result, the low oscillating attack at 0.1 Hz was able to cause
enough distortion to cause a large island to become unstable before
it broke into protected regions. In case of high-amplitude oscillation
attack, the protective load shedding scheme was able to isolate the at-
tacked region in the microgrid, however the microgrid and connected
buses normally did not survive due to such an aggressive attack. The
moderate-amplitude cycled load attack normally caused protection
to isolate the fault, but some portions of the attacked microgrid still
survived due to less drastic cycling. It is important to note that dif-
ferent protection schemes may result in differing behavior among
the explored attack scenarios. The assumed testing did not account
for an adversary knowing the protective layout of the system; as a
result, more sophisticated attacks may cause further damage to the
grid (in particular bypassing known protective operations isolating
the attack).



Table 4. Remaining load, machines, branches after an attack, and amount of buses lost
Attack Active Load (MW) Reactive Load (MVAR) Machines Branches Lost buses
Normal Operation 9037 1737 99 120 0
80 % at 0.05 Hz 4201 845 57 49 38
80 % at 0.1 Hz 4745 901 66 62 26
80 % at 0.5 Hz 6220 1121 83 74 14
80 % at 1 Hz 6884 1259 90 77 13
50 % at 0.05 Hz 6454 1174 90 83 12
50 % at 0.1 Hz 6381 1157 89 75 13
50 % at 0.5 Hz 7097 1302 90 79 13
50 % at 1 Hz 7052 1299 90 76 13
30 % at 0.05 Hz 5685 1016 82 59 27
30 % at 0.1 Hz 3953 793 55 45 41
30 % at 0.5 Hz 6509 1260 86 86 5
30 % at 1 Hz 6741 1294 91 80 4

5. CONCLUSION

This paper investigated potential impacts of cyber attacks that ex-
ploit compromised smart meters to oscillate the total load of a micro-
grid. We found that an intelligent adversary could produce a small-
amplitude load oscillation at a problematic frequency that can dis-
tort the grid and cause protective measures to take actions resulting
in many losses and islanding. With presented material with respect
to smart meter security exploitation, possible attacks on such sys-
tems could create harmful consequences that need to be addressed.
No countermeasures to such attacks were explored in this paper, but
remain a focal point for future research.
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