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Abstract—Voltage control in power distribution networks has
been greatly challenged by the increasing penetration of volatile
and intermittent devices. These devices can also provide limited
reactive power resources that can be used to regulate the
network-wide voltage. A decentralized voltage control strategy
can be designed by minimizing a quadratic voltage mismatch
error objective using gradient-projection (GP) updates. Coupled
with the power network flow, the local voltage can provide the
instantaneous gradient information. This paper aims to analyze
the performance of this decentralized GP-based voltage control
design under two dynamic scenarios: i) the nodes perform the
decentralized update in an asynchronous fashion, and ii) the net-
work operating condition is time-varying. For the asynchronous
voltage control, we improve the existing convergence condition
by recognizing that the voltage-based gradient is always up-to-
date. By modeling the network dynamics using an autoregressive
process and considering time-varying resource constraints, we
provide an error bound in tracking the instantaneous opti-
mal solution to the quadratic error objective. This result can
be extended to more general constrained dynamic optimization
problems with smooth strongly convex objective functions under
stochastic processes that have bounded iterative changes. Exten-
sive numerical tests have been performed to demonstrate and
validate our analytical results for realistic power networks.

I. INTRODUCTION

The smart grid vision has led to continued proliferation of
distributed energy resources (DERs) in the power distribution
networks, including the rooftop photovoltaic (PV) panels and
batteries of electric vehicles. Albeit environmentally friendly,
the DERs could greatly challenge the operational goal of main-
taining a satisfactory voltage level per power system reliability
standards. High variability of PV generation and elastic loads
can cause unexpected network-wide voltage fluctuations, at
much faster dynamics than the time-scale of traditional voltage
regulation devices; see e.g., [1]–[3] and references therein.
Thanks to advances in power electronics, DER devices can
also be excellent sources of reactive power, a quantity that
is known to have a significant impact on the network voltage
level. Thus, one major task for operating future distribution
networks is to design effective voltage control strategies to
utilize the reactive power from DERs, at minimal hardware
requirements.
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By and large, the communication infrastructure that sup-
ports power distribution networks is, and will continue to
be lacking in the foreseen future. Meanwhile, cost concerns
for DER products inevitably limit their sensing/computation
capabilities. Therefore, voltage control approaches by min-
imizing a centralized voltage mismatch error are not prac-
tically attractive, because their success strongly relies on
high-quality communications either between a control center
and remote devices [4], or among neighboring devices [3],
[5], [6]. These optimization-based open-loop control designs
may become unstable under communication delays or noises
during online implementations. Also, it is unclear whether
these approaches will be robust to asynchronous computational
speeds among the networked DERs of heterogeneous hardware
capabilities. To cope with the limited cyber infrastructure,
a decentralized voltage control framework is more preferred
for distribution network operations; see e.g., [1], [2], [7],
[8]. Under this framework, each node only needs to measure
its locally available voltage level as the controller input.
Our earlier work [8] has offered an overarching framework
that generalizes a variety of decentralized control designs,
along with convergence analysis for static system scenarios.
Interestingly, the local voltage measurement naturally provides
the instantaneous gradient information for a centralized error
objective by weighting the voltage mismatch. Hence, the
decentralized voltage control approach using this measurement
boils down to the classical gradient-projection (GP) method
accounting for the limits on reactive power resources. This
voltage-measurement-based decentralized design does not re-
quire any real-time communications, and can be implemented
with minimal upgrades in sensing hardware.

The goal of this paper is to analyze the performance of
this decentralized GP-based voltage control design under two
dynamic scenarios: i) the nodes perform the decentralized
update in an asynchronous fashion; and ii) the network op-
erating condition is dynamically changing. The scenario of
asynchronous updates arises from heterogeneous hardware ca-
pabilities among different DERs. It is also motivated to allow
the “plug-and-play” functionality for flexible DER integration
to distribution networks. The classical asynchronous optimiza-
tion framework always accounts for the case of outdated
information from other nodes, and thus the choice of step-size
has to be more conservative due to the information delay; see
e.g., [9] and [10]. Different from this, the voltage measurement
for our decentralized control design always provides the up-to-
date gradient information and does not suffer any information
delay. Thanks to this physical power network coupling, we
can show that the choice of the step-size for the asynchronous
decentralized updates is the same to the synchronous case.
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Fig. 1. A radial distribution network with bus and line associated variables.

Hence, its convergence condition is robust to potential dis-
crepancy in the control update rates among different DERs.

In power networks, voltage control designs under time-
varying operating conditions have been implemented as the
static optimal power flow solutions to dynamic settings in a
heuristic fashion [11], [12]. The scope of these efforts is more
centered around dynamic voltage control implementations
rather than providing control performance guarantees. The
latter is of high interest when accounting for the variability
of networked generations and loads in practice. With a time-
varying objective function, this problem becomes a stochastic
optimization one; see e.g., [13]. Stochastic approximation
algorithms such as stochastic (sub-)gradient decent have been
developed in e.g., [14], [15] and have been adopted by [16]
for this voltage control problem. Nonetheless, performance
analysis for stochastic optimization algorithms has focused on
the convergence to the optimal solution that minimizes the
expected objective function [13]. Aiming at the error bound
in tracking the instantaneous optimal solution, our analysis
is more closely related to the body of work on dynamic
convex optimization; see e.g., [17]–[19]. This type of problems
typically arises from applications in autonomous teams and
wireless sensor networks such as target tracking [20] and
estimation of the stochastic path [21]. Some of these dynamic
optimization algorithms follow a gradient descent update, but
none of them has considered the formulation of constrained
optimization. This is the key difference from our voltage con-
trol problem since the control input has to be feasible under the
dynamic reactive power limits. Hence, the main contribution
of our work lies in the fact that it explicitly accounts for
the time-varying projection operation of constrained dynamic
optimization. Our tracking error performance bounds will be
derived for a quadratic objective function and an autoregressive
dynamic model, motivated by this specific voltage control
problem. Nonetheless, our analytical results can be extended to
more general constrained dynamic optimization problems with
smooth strongly convex objective functions under stochastic
processes that have bounded iterative changes.

The remainder of this paper is organized as follows. Section
II presents the modeling of power distribution networks as the
basis of our analysis, while Section III designs a decentralized
voltage control strategy using the GP updates. Performance
analysis under asynchronous updates or time-varying network
operating condition is offered in Section IV and Section V,
respectively. Section VI presents numerical results to demon-
strate and validate our analytical results, and the paper is
wrapped up in Section VII.

II. SYSTEM MODELING

A power distribution network can be modeled using a tree-
topology graph (N , E) with the set of buses (nodes) N :=
{0, ..., N} and the set of line segments (edges) E := {(i, j)};
see Fig. 1 for a radial network illustration. At every bus j,
let vj denote its voltage magnitude and pj (qj) represent the
real (reactive) power injection, respectively. Bus 0 corresponds
to the point of common coupling, assumed to have unity
reference voltage; i.e., v0 = 1. For each line (i, j), let rij
and xij denote its resistance and reactance and Pij and Qij
the power flow from i to j, respectively.

To tackle the nonlinearity of power flow models, one can
assume negligible line losses and almost flat voltage, i.e., vj ∼=
1, ∀j. Under these assumptions, the so-termed LinDistFlow
model has been developed in [22], and its accuracy can be
numerically corroborated by several recent work [7], [8], [23]–
[25]. For each (i, j), the LinDistFlow model asserts the bus
power balance and line voltage drop, as given by

Pij −
∑
k∈N+

j

Pjk = −pj , (1a)

Qij −
∑
k∈N+

j

Qjk = −qj , (1b)

vi − vj = rijPij + xijQij (1c)

where the neighboring bus set N+
j := {k|(j, k) ∈ E , and k

is downstream from j}. For example, we have N+
i = {j} in

Fig. 1.
To construct the matrix form of (1), denote the graph

incidence matrix using the (N + 1) × N matrix Mo. Each
one of its `-th column corresponds to a line (i, j), with all
zero entries except for the i-th and j-th (see e.g., [26, pg. 6]).
Let us set Mo

i` = 1 and Mo
j` = −1 if j ∈ N+

i . Let m>0
represent the first row of Mo corresponding to bus 0, with the
rest of the rows in the N ×N submatrix M. Accordingly, M
is full-rank and invertible because the network is connected
under the tree-topology assumption [26]. Upon concatenating
all scalar variables into vector form, one can represent (1) as

−MP = −p, (2a)
−MQ = −q, (2b)

m0 + M>v = DrP + DxQ (2c)

where the N ×N diagonal matrix Dr has diagonals equal to
all line rij’s; and similarly for Dx having all xij’s. Viewing
the uncontrollable p as a constant, one can solve for P and
Q in (2) to establish the following:

v = Xq + v (3)

where the nominal voltage vector v captures the effects of
p when q = 0, while X := (M>)−1DxM

−1 can be
viewed as the network reactance matrix. The linear model
(3) constitutes the basis for developing decentralized voltage
control algorithms.

Remark 1 (Modeling Considerations). Nonlinearity of the
power flow model could be tackled by the formulation of
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semidefinite programming (SDP) [27]. Generally, a rank re-
laxation approach is adopted in order to obtain a SDP convex
problem formulation. Nonetheless, the SDP-based power flow
formulation would face several challenges when applied to
power (distribution) networks in practice. First, the resul-
tant power flow solution could be non-exact [28] under this
setting when power networks are unbalanced multi-phase.
Furthermore, performance guarantees for the SDP approach
fail to hold for general network topology such as meshed
systems [29]. Last, the SDP solution increases the compu-
tational burden significantly as the size of the network grows.
Compared to the SDP modeling approach, the LinDistFlow
model (3) holds for more general scenarios including meshed
topology and unbalanced three-phase systems while the resul-
tant algorithms enjoy minimal computational complexity [8],
[30]. Hence, we have adopted the LinDistFlow model for the
ensuing analysis while the numerical tests in Sec. VI will be
performed using exact power flow solvers on practical power
networks.

III. DECENTRALIZED VOLTAGE CONTROL

The goal is to control the reactive power q, such that v
approaches a given desirable voltage profile µ. The flat voltage
profile is typically chosen; i.e., µ := 1. At every time instance
k, let vk denote the instantaneous nominal voltage profile.
To allow for a decentralized control design, it turns out that
one can minimize a weighted voltage mismatch error using
B := X−1, as given by

q∗k = arg min
q∈Qk

fk(q) :=
1

2
(Xq + vk − µ)>B(Xq + vk − µ)

(4)

where the constraint set Qk := {q
∣∣q ∈ [q

k
,qk]} accounts

for the time-varying limits of local reactive power resources
at every bus [2]. Interestingly, matrix B = MD−1x M>, by
definition, is a weighted, reduced graph Laplacian for (N , E).
Since all the reactance values are positive, B is symmetric
and positive definite [8]. Accordingly, the weighted voltage
mismatch error objective of (4) is convex, and in fact quadratic,
in the variable q. Ideally, the unweighted error norm ‖v−µ‖
is the best objective in order to achieve the flat voltage profile.
Compared to the traditional paradigm of maintaining the
voltage within limits, this unweighted objective can improve
the system-wide voltage profile by coordinating network-wide
VAR resources. This is attractive for energy saving programs
such as a conservation voltage reduction implementation [31].
Albeit the problem (4) minimizes a surrogate objective, it
has been shown in [8] that q∗k can closely approximate the
optimal solution to the ideal unweighted error norm, especially
if there are abundant reactive power resources. Last, it is
possible to use other convex error penalty functions such as
the Huber’s loss function [32] instead of the squared error
norm objective in (4). This approach generalizes the current
design to allow for some tolerance in the voltage mismatch
error, which may be more attractive under the scenarios of
limited VAR resources.

Thanks to the separable structure of the box constraint Qk,
the gradient-projection (GP) method [33, Sec. 2.3] can be

invoked to solve (4). Upon forming its instantaneous gradient
∇fk(qk) := Xqk + vk − µ, the GP iteration for a given
positive step-size ε > 0 becomes

qk+1 = Pk [qk − εD∇fk(qk)] (5)

where the projection operator Pk thresholds any input to be
within Qk, and D is a diagonal scaling matrix that can be
designed. As a first-order method, the GP method has a linear
convergence rate, while the convergence speed depends on
the condition number of the corresponding Hessian matrix
[33, Sec. 3 .3]. Motivated by this fact, the scaling matrix
can be chosen according to the inverse of the diagonals of
Hessian matrix by setting D := [diag(X)]−1 to approximate
the Newton gradient. Note that a positive diagonal matrix D
affects neither the separability of operator P, nor the optimality
of the update (5).

By setting the GP iterate qk ∈ Qk to be the control input at
any time k, the instantaneous voltage becomes vk = Xqk+vk
based on (3). Thanks to the physical power network coupling,
vk always provides the up-to-date gradient information as
∇fk(qk) = vk−µ. Accordingly, the GP update in (5) can be
implemented by directly measuring the instantaneous voltage
as

qk+1 = Pk [qk − εD(vk − µ)] , (6)

which can be completely decoupled into decentralized updates
at each bus because Pk is separable. This decentralized voltage
control is very attractive with minimal hardware requirements
as each bus only needs to measure its local voltage and
requires no communication. The optimality and convergence
conditions for (6) have been investigated in [8], which are
summarized by the following proposition.

Proposition 1. When vk = v and Qk = Q (time-invariant
case), the decentralized update (6) approaches the unique
time-invariant optimizer q∗ of problem (4) if the step-size
ε ∈ (0, 2/M) where

M := λmax{X̃} (7)

is the largest eigenvalue of matrix

X̃ := D
1
2 XD

1
2 . (8)

The decentralized voltage control design has to account for
a variety of uncertainties in practical system implementations.
First, due to heterogeneity of various DERs, it is difficult
to perfectly synchronize the decentralized update at different
buses. This is especially important to facilitate the “plug-and-
play” functionality for flexible DER integration. Second, the
volatility and intermittence of electric loads and renewable-
based generations challenge the static setting of time-invariant
vk. It is of considerable interest to quantify the performance
of the decentralized control (6) in terms of tracking the time-
varying optimizer q∗k to the dynamic objective fk.

IV. ASYNCHRONOUS DECENTRALIZED VOLTAGE
CONTROL

When the DERs are heterogeneous, it is logical that the
decentralized voltage update should be performed in an asyn-
chronous fashion. This way, the buses with better computation
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and sensing capabilities do not need to wait for the slowest
one. Accordingly, these buses can execute more updates for
a same time interval and hence respond more quickly to
localized voltage deviations.

To this end, let the set Kj collects all the time instances
when bus j executes its decentralized update. The asyn-
chronous counterpart of (6) can be modeled by

qk+1 = qk + sk, ∀k (9)

with the difference at bus j given by

sj,k :=

{
Pj,k [qj,k − εDj(vj,k − µj)]− qj,k, k ∈ Kj ,

0, k /∈ Kj ,
(10)

where Dj is the (j, j)−th entry of D, while Pj,k projects the
input to [q

j,k
, qj,k].

To establish the convergence condition, every bus needs to
update sufficiently often. Similar to the classical asynchronous
algorithm analysis in [9, Ch. 7], we assume the following
bounded update delay condition.

Assumption 1 (Bounded Update Delay). For every bus j and
time instance k ≥ 0, there exists a positive integer K such
that at least one element in the set {k, k+ 1, . . . , k+K − 1}
belongs to Kj . Equivalently, every bus must update at least
once every K iterations.

In addition to Assumption 1, the analysis of classical asyn-
chronous algorithms also assumes the bounded information
delay condition [9, Ch. 7]. Due to potential communication
delays among peer processors, the updates at some buses may
not be executed based on the most up-to-date system-wide
information. By assuming that the local information used for
computing the gradient is potentially obsoleted by at most
K iterations, it has been established in [9, Sec. 7.5] that
the asynchronous GP algorithm in (9)-(10) converges to the
optimal solution with more conservative step-size choice given
by

0 < ε < 1/[M(1 +K +NK)]. (11)

Due to information delay, the choice of step-size would depend
on the slowest processor in the network. Generally, this bound
on ε can be much smaller than the 2/M bound in Proposition
1, resulting in a much slower convergence compared with the
synchronous case.

For our decentralized voltage control, the gradient
∇fk(qk) = vk−µ always holds. Thanks to the physical power
network coupling, the local voltage vj,k always provides the
up-to-date gradient information at every iteration k. Hence,
whenever a node is active, the difference sj,k computed in
(10) does not suffer from any information delay. This is
different from most parallel and distributed algorithms where
the updates at every processor require information sent by
peer processors. Therefore, convergence of (9)-(10) no longer
requires the more conservative choice of ε in [9, Sec. 7.5].

Theorem 1. Under Assumption 1, when vk = v and Qk = Q
(time-invariant case), the asynchronous update illustrated in
(9)-(10) converges to the time-invariant optimizer q∗ if the
step-size ε ∈ (0, 2/M).

Proof: First, it is easy to show that the fixed-point of
(9)-(10) is the same to (6) using contradiction. As for the
convergence, by projecting any scalar q to [q

j
, qj ], it holds that

[Pj(q)− qj,k][Pj(q)− q] ≤ 0 for the iterate qj,k ∈ [q
j,k
, qj,k]

where Pj = Pj,k; see e.g., [9, Sec. 3.3.1]. This implies that at
every iteration k ∈ Kj (use fk = f for time-invariant case)

sj,k[sj,k+εDj∇jf(qk)]=εDjsj,k∇jf(qk) + (sj,k)2 ≤ 0.
(12)

The descent lemma in [9, Sec. 3.3.2] together with the
Lipschitz continuity of f(·) entails for every k

f(qk+1) = f(qk + sk)

≤ f(qk) + s>k∇f(qk) + (M/2)‖sk‖2

≤ f(qk)−
(

1

ε
− M

2

)
‖sk‖2. [cf. (12)]

Summing up the inequality over all iterations yields∑∞
k=0 ‖sk‖2 ≤

(
1
ε −

M
2

)−1
f(q0) <∞,

which holds as long as
(
1
ε −

M
2

)
is positive. Thus, if 0 < ε <

2/M , ‖sk‖2 is summable and the convergence limk→∞ sj,k =
0 holds for every j. And this completes the asymptotic
convergence claim for qk to its fixed point q∗.

Convergence analysis for the asynchronous voltage control
updates ensures that the heterogeneity of DERs does not affect
the choice of ε. As for online implementation, this result can
provide guaranteed stability for the proposed control design.

V. DYNAMIC DECENTRALIZED VOLTAGE CONTROL

In addition to the asynchronous voltage control updates, the
uncertainty in the nominal voltage vk further challenges the
performance of decentralized voltage control. The volatility
and intermittence of loads and generations lead to temporal
variations in the network operating condition, i.e., a dynamic
vk. Thus, it is imperative to analyze the performance of the
decentralized voltage control under a dynamic setting.

To this end, the first order autoregressive (AR(1)) process
is adapted to model the short-term dynamics.

Assumption 2 (Dynamic Voltage Profile). For a given con-
stant vector c, the nominal voltage vk follows a wide-sense
stationary AR(1) process, as given by

vk+1 = Avk + ηk+1 + c (13)

where A is a time-invariant transition matrix with its spectral
radius less than 1, while ηk+1 represents a zero-mean white
noise process with covariance matrix Ση .

The AR(1) model (13) can capture both a short-term tem-
poral and spatial correlation of the nominal voltage profile. Its
validity has been corroborated by [34] from real data-based
tests. Under Assumption 2, for every time k, the nominal
voltage vk has constant mean Evk = (I − A)−1c with a
bounded covariance matrix Σv satisfying

Σv = AΣvA
> + Ση.

For ease of exposition, the spatial correlation for power
networks is not considered as it is often time negligible [35],
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corroborated by the structure of inverse of reduced graph
Laplacian matrix X. Since X is in fact diagonally dominant,
the variations in loads and generations tend to have very
localized impacts. In addition, we assume an equal variation
level in the temporal dynamics across the network; i.e., A =
αI. However, the ensuing analysis holds for the original AR
modeling in (13) or even higher-order AR modeling as long
as it has bounded successive differences. These assumptions
simplify the AR(1) model as follows

vk+1 = αvk + ηk+1 + c (14)

with Ση = σ2I. Accordingly, the stability condition boils
down to |α| < 1, while vk the mean Evk = c/(1 − α) and
the covariance Σv = σ2/(1− α2)I. The smaller the value of
|α| is, the faster that the nominal voltage vk evolves.

Proposition 2 (Lemma 1 in [36]). Under Assumption 2, the
expectation of the weighted norm of consecutive difference is
bounded, i.e., there exists a bounded constant B1 such that

E‖vk+1 − vk‖2D =
2σ2TrD

1 + α
≤ B1 for all k = 0, 1, . . . .

(15)
where the weighted norm ‖v‖2D := v>Dv for any v.

Under the settings of both dynamic objective and constraint,
we formally state the assumption we make for the performance
analysis of the gradient projection approach (6).

Assumption 3 (Bounded Drift of Optimizer). The successive
difference of the transient optimal solution is bounded, i.e.,
there exists some bounded constant B2 such that (see (4) for
the definition of q∗k)

E‖q∗k − q∗k+1‖2D−1 ≤ B2 for all k = 0, 1, . . . .

This assumption is related to the boundedness of voltage
drift (see Prop. 2) and the compactness of box constraints. For
instance, when the reactive power is unlimited, i.e., Qk = RN ,
one can easily verify that E‖q∗k−q∗k+1‖2D−1 is bounded. When
the reactive power is uniformly limited, i.e., Qk is always
some compact set (double-sided box constraint suffices) for
all k, we still have the bounded optimizer drift due to the fact
that q∗k ∈ Qk. Albeit the error bound (stability) we are going
to construct will depend on B2, intuitively, a smaller voltage
drift bound B1 tends to decrease the drift of the optimizer
bound B2 in power networks.

We first introduce a few quantities to simplify the presen-
tation:

yk := D−
1
2 qk, y∗k := D−

1
2 q∗k,

uk := D−
1
2 (vk − µ),

and P̃k[·] is an operator that projects its input onto the set

Q̃k := {q
∣∣q ∈ [D−

1
2 q

k
,D−

1
2 qk]}.

This way, the original iterative update in (6) is equivalent to

yk+1 = P̃k[yk − ε(X̃yk + uk)], (16)

which can be viewed as the standard gradient projection update
for the following dynamic constrained optimization problem

min
y∈Q̃k

f̃k(y) :=
1

2
‖Py + (P>)−1uk‖2 (17)

where P is obtained by the Cholesky factorization for the
symmetric PD matrix X̃ = P>P. Correspondingly, y∗k is the
optimizer of (17). Also, we denote

C := min
k≥0;y∈RN

{
λmin{∇2f̃k(y)}

}
= λmin{X̃}

which is the smallest eigenvalue of X̃. We say a differentiable
function f : Rn → R is strongly convex with some positive
constant c if for any x and y, we have f(y) ≥ f(x) +
〈∇f(x), y − x〉 + c

2‖x‖
2 where 〈·, ·〉 is the inner product of

two vectors. A differentiable function f : Rn → R is gradient
Lipschitz continuous with some positive constant m if for any
x and y, we have f(y) ≤ f(x)+〈∇f(x), y−x〉+m

2 ‖x‖
2. Note

that, under this definition, C also serves as the least strong
convexity constant of f̃k(y), ∀k, while M also serves as the
greatest gradient Lipschitz continuity constant of f̃k(y), ∀k.
A vector v is called a subgradient of a convex function
f : X → R

⋃
{+∞} at point x ∈ X if f(y) ≥ f(x)+〈v, y−x〉

for any y ∈ X . The set of all subgradients at x is called the
subdifferential at x. We use ∇̃f̃k(y) and ∂f̃k(y) to denote
a subgradient and the subdifferential of the function f̃k at
y, respectively. These notations were also used in [37]. The
subgradient used in the algorithm or analysis will be specified
in the context, and our analysis will be based on the equivalent
update and optimization problem in (16) and (17), respectively.
The following lemma gives the first-order optimality condition
of (17) and an equivalent recursive relation of (16).

Lemma 1 (First-Order Optimality Condition and Recursive
Relation). The instantaneous optimizer y∗k to the dynamic
optimization problem (17) and iterates yk satisfy the following
conditions, for k = 0, 1, . . .,

X̃y∗k + uk + ∇̃gk(y∗k) = 0 (18)

and

yk+1 − yk = −ε
[
X̃(yk − y∗k) + ∇̃gk(yk+1)− ∇̃gk(y∗k)

]
(19)

where

gk(y) =

{
0, if y ∈ Q̃k,
+∞, if y /∈ Q̃k

is the indicator function of the set Q̃k at time k.

Proof: We first replace the projection operation in (16)
by a subgradient step featured by the indicator function gk(·).
By definition, the projection of any ω to Q̃k equals to

P̃k(ω) = arg min
x
εgk(x) +

1

2
‖x− ω‖2. (20)

The first-order optimality condition leads to ε∇̃gk(P̃k(ω)) +
P̃k(ω)−ω = 0. Thus by letting ω = yk − ε(X̃yk + uk) and
P̃k(ω) = yk+1, we obtain

yk+1 = yk − ε[X̃yk + uk + ∇̃gk(yk+1)]. (21)
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Furthermore, by using the indicator function, (17) is equiv-
alent to

y∗k = arg min
y

1

2
‖Py + (P>)−1uk‖2 + gk(y). (22)

From the first-order optimality condition of (22), we have
X̃y∗k + uk + ∇̃gk(y∗k) = 0. This along with (21) proves the
recursive relation (19).

Note that the subgradient ∇̃gk(yk+1) used in (21) is well-
defined because (i) yk+1 ∈ Q̃k, (ii) gk(·) is continuous over
Q̃k, and (iii) the minimum in (20) is uniquely attained since
‖x− ω‖2 is real-valued, strictly convex, and coercive. Using
the aforementioned notation, our analysis coincides with those
earlier results on nonsmooth optimization; see e.g., similar
notions and analysis schemes have appeared in [37]–[39] and
references therein. Our main result is as follows:

Theorem 2 (BIBO Stability with Geometric Decaying). Un-
der Assumption 3, for any step-size choice

ε ∈
(

0,
2

C +M

]
,

the expectation of the weighted tracking error between the
decentralized control update qk of (6) and the instantaneous
optimal solution q∗k can be bounded by

E‖qk − q∗k‖2D−1 ≤ ρkE‖q0 − q∗0‖2D−1 + 1−ρk
1−ρ Θ, ∀k (23)

where the geometric rate ρ ∈ (0, 1) and Θ is a bounded
positive constant gap.

Proof: By the smoothness and convexity of f̃k, it follows
that [40] (see (7) for the definition of M )

CM
C+M ‖yk − y∗k‖2 + 1

C+M ‖X̃(yk − y∗k)‖2

≤ 〈yk − y∗k, X̃(yk − y∗k)〉.
(24)

By applying the basic inequality

2〈
√
βa,

1√
β

b〉 ≤ a‖a‖2 +
1

a
‖b‖2

which holds for any β > 0 and any real vectors a and b of
the same dimension, the right-hand-side of (24) can be upper
bounded by

〈yk − yk+1 + yk+1 − y∗k, X̃(yk − y∗k)〉
≤ C+M

4 ‖yk − yk+1‖2 + 1
C+M ‖X̃(yk − y∗k)‖2

+〈yk+1 − y∗k, X̃(yk − y∗k)〉.
(25)

Substituting (25) into (24) leads to

CM
C+M ‖yk − y∗k‖2

≤ C+M
4 ‖yk − yk+1‖2 + 〈yk+1 − y∗k, X̃(yk − y∗k)〉.

(26)
Since the indicator function gk(·) is convex due to the fact
that Q̃k is a convex set in our settings, its subgradient ∇̃gk(·)
(subdifferential ∂gk(·)) is a (set-valued) monotone mapping
(this can also be obtained from the subgradient inequality
[39]), i.e.,

〈yk+1 − y∗k, ∇̃gk(yk+1)− ∇̃gk(y∗k)〉 ≥ 0 (27)

Combining (26) and (27) we have
C+M

4 ‖yk − yk+1‖2
+〈yk+1 − y∗k, X̃(yk − y∗k) + ∇̃gk(yk+1)− ∇̃gk(y∗k)〉

≥ CM
C+M ‖yk − y∗k‖2.

(28)
Substituting (19) into (28) for X̃(yk − y∗k) + ∇̃gk(yk+1) −
∇̃gk(y∗k) leads to

C+M
4 ‖yk − yk+1‖2 + 1

ε 〈yk+1 − y∗k,yk − yk+1〉
≥ CM

C+M ‖yk − y∗k‖2.

Using the equality 〈y∗k − yk+1,yk+1 − yk〉 = ‖y∗k − yk‖2 −
‖y∗k − yk+1‖2 − ‖yk+1 − yk‖2 to expand the inner product,
we have

‖yk+1 − y∗k‖2 ≤
(

1− 2εCM
C+M

)
‖yk − y∗k‖2

+
(
εM+εL

2 − 1
)
‖yk − yk+1‖2.

(29)

By choosing ε ≤ 2
C+M to ensure the second term on the right-

hand-side of (29) being nonnegative, the inequality (29) can
be further relaxed to

‖yk+1 − y∗k‖2 ≤
(

1− 2εCM

C +M

)
‖yk − y∗k‖2. (30)

By applying another basic inequality

‖a′ + b′‖2 ≤ (1 + β′)‖a′‖2 + (1 +
1

β′
)‖b′‖2

which holds for any β′ > 0 and any real vectors a′ and b′ of
the same dimension, we have

‖yk+1 − y∗k + y∗k − y∗k+1‖2
≤ (1 + β′)‖yk+1 − y∗k‖2 + (1 + 1

β′ )‖y
∗
k − y∗k+1‖2

≤ ρ‖yk − y∗k‖2 + (1 + 1
β′ )‖y

∗
k − y∗k+1‖2

(31)
where ρ := (1 + β′)(1 − 2εCM

C+M ) while the second inequality
comes from (30). Let us denote Θ := (1 + 1

β′ )B2, and
thus taking expectation on both sides of (31) gives us [cf.
Assumption 3]

E‖yk+1 − y∗k+1‖2 ≤ ρE‖yk − y∗k‖2 + Θ. (32)

Applying recursive induction on (32), we eventually obtain

E‖yk+1 − y∗k+1‖2 ≤ ρk+1E‖y0 − y∗0‖2 +
1− ρk+1

1− ρ
Θ,

which recovers (23) by the definition of yk+1 and y∗k+1. It
shows that as long as ρ ∈ (0, 1) and Θ ∈ [0,∞), E‖yk+1 −
y∗k+1‖2 is bounded for all k. Note that the choice of β′ can be
arbitrary close to 0. Hence ρ can always achieve a value that
is less than 1 as long as ε > 0 and C > 0 (a simple choice to
demonstrate this is β′ = εCM/(C + M − 2εCM)). Finally,
we conclude that the step-size condition is 0 < ε ≤ 2

C+M .
Theorem 2 establishes that the tracking error of the de-

centralized control update (6) under dynamical settings expo-
nentially decreases until a constant error bound is reached.
Moreover, the AR(1) process assumed to model the vk
series can be potentially extended to a general stochastic
process that has bounded iterative changes. This is because
the constant Θ in (23) is bounded as long as the condition
in (15) holds. To extract a more specific result, let us choose
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β′ = εCM/(C + M − 2εCM). In this case, the steady-state
(k →∞) error is explicitly bounded by

limk→∞
1−ρk
1−ρ Θ

= 1
1−(1+β′)(1− 2εCM

C+M )
(1 + 1

β′ )B2

= (C+M)(C+M−εCM)
(εCM)2 B2.

(33)

This error depends on system parameters C, M , step-size ε,
and the constant B2 which bounds the successive difference
of the instantaneous optimal solutions. It can be seen that
the larger the step-size is, the smaller the steady-state error
bound is. Letting the step-size be ε = 2

C+M (best achievable)
further yields that the steady-state error does not exceed
(C+M)2(C2+M2)B2

4C2M2 . To sum up, under the settings of both
dynamic objective and dynamic constraint, the stable step-size
is slightly smaller than the one in the static case (no optimality
drift) but under both situations, the achievable step-sizes are on
the same order O

(
1
M

)
because 2

M ≥
2

C+M ≥
2

M+M = 1
M .

Remark 2 (Time-Invariant Box Constraints). For the special
case that the box constraints are time-invariant (only objective
is time-varying), we can show that the stepsize choice to
achieve stability is the same to the static case of ε ∈ (0, 2/M)
[36]. This way, the same choice holds for static, dynamic, or
asynchronous scenarios. Constant limits on reactive power are
the case for photovoltaic inverters if the solar irradiance stays
the same during e.g., night time and no-cloud scenarios.

VI. NUMERICAL TESTS

We investigate the performance of the decentralized voltage
control scheme under the settings of asynchronous update and
dynamically time-varying network operating conditions. The
desired voltage magnitude µj is chosen to be 1 at every bus j.
Each bus is assumed to have a certain number of PV panels
installed, and thus it is able to control its reactive power via
advanced inverter design. All numerical tests are performed in
MathWorks R© MATLAB 2014a software.

A single-phase radial power distribution network consisting
of 21 buses is first used to test the algorithm. This network is
equivalent to the system in Fig. 1 for N = 20. The impedance
of each line segment is set to be (0.233 + j0.366)Ω. Hence,
the linearized flow equations in (2) is only an approximate
model. The limits of reactive power resources at every bus
is chosen to be [−100, 100]kVA. More realistic test using a
123-bus multi-phase network will be presented later on.

Test Case 1: The impact of asynchronous updates across
different buses is first considered under a constant nominal
voltage vk. The maximum update delay is set to be K = 50.
For the 21-bus network, the theoretical upper bound on the
step-size is ε < 2/M = 0.0062 following Theorem 1. Hence,
we set the step-size to be ε = 1/M = 0.0031. To model
the level of asynchronous updates among multiple buses, we
introduce a duty cycle parameter η ∈ (0, 100%]. For a cycle of
total K2 time slots, we randomly pick dη× K

2 e number of slots
for bus j to implement its voltage control update. Hence, the
maximum update delay among any two nodes is no more than
K. In addition, the larger η is, the more frequently every bus
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Fig. 2. Iterative voltage mismatch error performance for the asynchronous
decentralized voltage control scheme under various choices of duty cycle η
and step-size ε.

Expected Number of Total Control Updates
0 500 1000 1500 2000

‖v
k
−

1
‖2

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

η = 100%, ǫ = 0.003
η = 60%, ǫ = 0.003
η = 20%, ǫ = 0.003
η = 100%, ǫ = 0.003/1051
η = 60%, ǫ = 0.003/1051
η = 20%, ǫ = 0.003/1051

Fig. 3. Voltage mismatch error versus the total number of updates across the
network for the asynchronous voltage control scheme under various choices
of duty cycle η and step-size ε.

performs an update, and the smaller the effective update delay
would be. In particular, the setting of η = 100% provides the
benchmark performance of the synchronous scenario where
each bus updates at every time slot. Fig. 2 plots the iterative
voltage mismatch error performance for the decentralized
voltage control design under different η values and choices of
step-size. The case of no voltage control is also plotted with
the corresponding error staying constant. Using the classical
convergence conditions for asynchronous GP updates in (11),
the step-size should be chosen as ε = 0.0031/1051 with
N = 20 and K = 50. As shown in Fig. 2, this choice of step-
size is too conservative. Thus, the resultant convergence speed
is much slower than that of the choice ε = 0.0031 following
Theorem 1. This demonstrates that our theoretical results for
asynchronous GP updates are more competitive for the specific
decentralized voltage control application here. Moreover, it
is observed that the convergence accuracy would depend on
the total number of updates for the whole network. Because
of the asynchronous update settings, the expected number of
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Fig. 4. An instance of the nominal voltage series {vk} at selected buses
under the AR(1) model settings.

control updates across the network for a cycle of K
2 iterations

equals to dη× K
2 e×N . Fig. 3 illustrates the voltage mismatch

error performance versus the expected number of total control
updates. Interestingly, the convergence speed in this plot is
the same for the same step-size ε value, regardless of the
asynchronous metric η. Hence, the average update rate across
all the buses determines the performance of the asynchronous
decentralized voltage control scheme.

Test Case 2: To verify our results on dynamic voltage control,
we generate the nominal voltage series {vk} using the AR(1)
model in (14). Neglecting the effects of voltage regulators, it
is well known that the voltage magnitude in power networks
tends to decrease monotonically away from the root node, i.e.,
bus 0. Hence, we set the mean voltage at bus j to be cj/(1−
α) = 1.025 − 0.05

19 (j − 1) to follow this decreasing voltage
rule. Fig. 4 plots the nominal voltage sequence at selected
network locations for the choice of α = 0.1 and noise variance
σ2 = 6 × 10−6. This choice of the forgetting factor α value
leads very fast dynamics in the nominal voltage.

1) The step-size ε: Fig. 5 plots the iterative voltage mis-
match error performance using different choices of ε, while
Fig. 6 plots the weighted tracking error between the iterate qk
and the corresponding instantaneous optimal q∗k. Both plots are
averaged over 30 random realizations of the nominal voltage
series to approximate the expected values. The maximum value
ε = 0.0061 is chosen according to the bound 2/(C + M) in
Theorem 2. As shown more clearly in Fig. 6, a larger step-
size ε leads to slightly faster convergence of the tracking error.
However, the steady-state voltage mismatch error is higher for
the largest ε as shown in Fig. 5. This observation coincides
with the analytical results of Theorem 2. The convergence
geometric rate ρ depends on an appropriate choice of ε, while
the steady-state error related constant Θ tends to increase with
a larger ε choice. Thus, the choice of ε would be able to
trade the steady-state tracking error off the convergence speed.
Under this trade-off, the optimal selection of ε would also
depend on the dynamics of the AR(1) process. If the nominal
voltage evolves very fast, it is preferred to have a large ε for
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Fig. 5. Iterative voltage mismatch error performance averaged over 30 random
realizations under different ε values.
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Fig. 6. Iterative tracking error averaged over 30 random realizations under
different ε values.

a better tracking performance. Otherwise, if the dynamics of
the nominal voltage series has a large time constant, we can
afford to have a small ε in order to achieve a better tracking
error performance. By analyzing the bounds in Theorem 2, it
is possible to provide a general guideline on selecting a proper
ε value based on the dynamics of vk.

2) The forgetting factor α: We have also varied the pa-
rameter α for the AR(1) process used to generate the nominal
voltage series, with values ranging from 0.1 to 0.999. The step-
size ε is fixed at 0.0031. For comparison purposes, the variance
of the nominal voltage at every bus is aligned to be the same
for different α values by setting it to be σ2/(1−α2) = 10−5.
Hence, when α = 0.999 very closely approaches 1, the {vk}
series would almost stays flat with minimal temporal vari-
ations. Accordingly, the consecutive voltage mismatch error
bound B1 in Prop. 2 decreases as α approaches its upper bound
1. Fig. 7 plots the iterative voltage mismatch error for various
α values, while Fig. 8 again plots the corresponding weighted
tracking error performance. These curves are also averaged
over 30 random realizations. The performance under either
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Fig. 7. Iterative voltage mismatch error performance averaged over 30 random
realizations for the voltage control scheme with various values of forgetting
factor α.

Fig. 8. Iterative tracking error averaged over 30 random realizations for the
voltage control scheme with various values of forgetting factor α.

mismatch error metrics improves with a larger α value since
the constant B1 and thereby B2 would decrease. Accordingly,
this leads to a smaller Θ value and reduces the steady-state
tracking error. This numerical result points out that B2, which
bounds the optimizer drift, could be related to the consecutive
voltage difference B1.

3) The noise variance σ2: Similar test has been conducted
with varying parameter σ for the AR(1) process ranging
from 7.7 × 10−4 to 7.7 × 10−3. With the same step-size
ε = 0.0031 and parameter α = 0.1, Fig. 9 and Fig. 10
plot the average voltage mismatch and weighted tracking error
over 30 realizations. Similar to the observations under various
α values, using a smaller σ2 would decrease the steady-
state error bounds since the constant Θ tends to be positively
related to the parameter σ2. As the parameter α is fixed, the
variance of the nominal voltage at every bus decreases as the
noise variance diminishes. Accordingly, the performance of no
voltage control slightly improves with smaller noise variance.

All numerical results in this test case have verified our
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Fig. 9. Iterative voltage mismatch error performance averaged over 30 random
realizations under various σ values.

Fig. 10. Iterative tracking error averaged over 30 random realizations under
various σ values.

analytical bounds on the tracking error performance. To sum
up, the convergence speed depends on the choice of step-
size ε. Depending on the time constant of nominal voltage
dynamics, the step-size needs to be properly chosen trading off
the convergence speed and the steady-state error performance.
The dynamics of nominal voltage series based on the AR(1)
process parameters does not affect the convergence speed per
se, yet more significantly related to the steady-state tracking
error performance. Note that the analytical bounds of Theorem
2 are not tight, because of the scalar β′ used to eliminate the
cross-product terms from the squared sum norm. However,
they are very effective to characterize the error performance
of dynamic decentralized voltage control scheme while facil-
itating the selection of step-size.

Test Case 3: We have also tested the decentralized volt-
age control scheme using a realistic multi-phase distribution
network, namely the IEEE 123-bus system model [41]. This
test case incorporates both the asynchronous updates among
multiple buses and dynamical nominal voltage, with similar
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Fig. 11. Iterative voltage mismatch error performance on the IEEE 123-
bus system under both the asynchronous updates and the dynamic network
operating conditions with different η values.

settings as in the earlier two test cases. Moreover, the line seg-
ments of the 123-bus system are all lossy and involves inter-
phase mutual couplings. Hence, this test provides an accurate
representation of how the decentralized voltage control would
perform in practice with uncertainties in the DER hardware
and network operating conditions.

Fig. 11 plots the iterative network voltage mismatch error
under various choices of duty cycle parameters η. The step-
size ε = 0.01 has been chosen for every scenario to ensure
stability. Different from the earlier two test cases, the control
implementation has incorporated both the asynchronous up-
dates and the dynamic voltage profile. Although we have not
be able to derive the tracking error bounds under both sources
of uncertainty, Fig. 11 demonstrates that its convergence speed
results is similar to the solely asynchronous case as in Fig.
2, while the steady-state tracking error may have similar
bounds as in the dynamic control analysis. In addition, Fig.
12 illustrates the voltage mismatch error performance versus
the expected number of total control updates. Similar to
its single-phase counterpart, the convergence speed in this
plot is analogous for a fixed step-size ε value, regardless of
the asynchronous metric η. Thus, we are confident that the
analysis of this paper can be integrated to a joint framework
that characterizes the tracking error performance under both
uncertain sources.

VII. CONCLUSIONS AND FUTURE WORK

This paper develops a decentralized dynamic optimization
framework for analyzing the performance of a voltage control
scheme based on gradient-projection (GP) methods for online
system implementations. By constructing the linearized flow
model for power distribution networks, one can design a
voltage control scheme by minimizing a surrogate voltage
mismatch error using the GP iterations. Thanks to the physical
power network coupling, this GP-based scheme boils down
to a decentralized voltage control design where every bus
can measure its local voltage to obtain the instantaneous
gradient direction. Compared to earlier results for a static
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Fig. 12. Voltage mismatch error versus the total number of updates across
the IEEE 123-bus system for the asynchronous voltage control scheme under
dynamic operating conditions with various choices of duty cycle η.

optimization scenario, we have significantly extended the
analysis on convergence conditions and error performance to
account for two dynamic scenarios: i) the nodes perform the
decentralized update in an asynchronous fashion; and ii) the
network operating point is dynamically changing. Assuming
the nominal voltage evolves following an AR(1) process, the
weighted tracking error can be bounded by an exponentially
decreasing term plus a constant term that would depend on the
successive difference of the transient optimal solution. Interest-
ingly, the choice of step-size may need to be more conservative
depending on the trade-off between the convergence speed and
the steady-state tracking error for the dynamic control design.
Several numerical tests have been performed to demonstrate
and validate our analytical results on the performance of the
decentralized voltage control scheme under realistic dynamic
scenarios using practical power network models.

Future work includes the development of an integrated
framework for performance analysis under both dynamic sce-
narios simultaneously. We are also interested to investigate
further on the impacts of vastly different time-scale among
all network resources, which will help us to characterize the
interactions with traditional voltage control devices of slower
time-scales.
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