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ABSTRACT
A class of cyber-attacks called False Data Injection attacks
that target measurement data used for state estimation in
the power grid are currently under study by the research
community. These attacks modify sensor readings obtained
from meters with the aim of misleading the control center
into taking ill-advised response action. It has been shown
that an attacker with knowledge of the network topology
can craft an attack that bypasses existing bad data detection
schemes (largely based on residual generation) employed in
the power grid. We propose a multi-agent system for detect-
ing false data injection attacks against state estimation. The
multi-agent system is composed of software implemented
agents created for each substation. The agents facilitate the
exchange of information including measurement data and
state variables among substations. We demonstrate that the
information exchanged among substations, even untrusted,
enables agents cooperatively detect disparities between local
state variables at the substation and global state variables
computed by the state estimator. We show that a false data
injection attack that passes bad data detection for the entire
system does not pass bad data detection for each agent.

1. INTRODUCTION
Energy management systems (EMS) in power grids rely

on state estimation to obtain information about their op-
erating conditions. State estimation is carried out based
on the topology of the power network and data readings
taken from measuring units deployed locally at substations.
The collected meter measurements are used to estimate state
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variables which include bus voltage magnitudes and phase
angles. Based on state estimates obtained from the state
estimator, control decisions and subsequent actions that di-
rectly impact the operation of the power grid are made.
To handle errors associated with noise and faulty meters
in state estimation, bad data detection (BDD) schemes are
employed. BDD relies on Chi-square tests and residual sig-
nals generated based on the squares of differences between
measured data and estimated data [1].

Advanced power grid technology integrates varieties of
digital computing and communication technologies, which
exposes the power delivery infrastructure to malicious at-
tacks. Attackers with access to the power grid’s topology
information can carry out false data injection (FDI) attacks.
As shown in [2, 3, 4, 5], measurements compromised by FDI
attacks can bypass BDD schemes during state estimation. If
the control center uses compromised measurements for state
estimation, the resulting state estimate will mislead the con-
trol center regarding the actual operating condition of the
power grid inherently affecting control decisions.

In this paper, we propose a multi-agent system that de-
tects FDI attacks targeting state estimation in power grids.
We logically partition a power grid into multiple sub-systems,
each comprising a substation and other substations directly
connected to it through transmission lines. Because off-
shelf computing and communication infrastructures are de-
ployed in substations, we can deploy software-based agents
in each substation and allow them to communicate with
each other. The agents facilitate exchange of meter mea-
surements among substations that are included in each sub-
system. Each agent can perform local state estimation for its
sub-system. In the absence of FDI attacks, state estimation
results at each sub-system are identical to state estimation
results for the whole grid. However, in the presence of FDI
attacks compromised measurements can bypass bad data de-
tection during state estimation for the whole grid. State esti-
mation performed at each sub-system is used to analyze the
compromised measurements and identify disparities. FDI
attacks compromise measurements based on the topological
information of the power grid such as connectivity of each
substation and susceptance of each transmission line. How-
ever, the topological information for each sub-system varies.
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As a result, the condition that hides compromised measure-
ments from state estimation for the whole grid can fail in
the constructed sub-systems.

To evaluate the proposed strategy for FDI detection, we
conduct experiments with the IEEE 9-bus, 14-bus and 30-
bus power system benchmarks using MATPOWER [16], an
open source MATLAB toolbox. For each system, we gener-
ate 1000 attack cases that can bypass BDD schemes during
state estimation for the whole grid. Then, we construct
sub-systems at each bus in the power system and use state
estimation at each sub-system to analyze all FDI cases. In
our experiments, we can detect all FDI attack cases with at
least one agent.

The rest of this paper is organized as follows; In Section
II a survey of related literature is presented. In Section III,
preliminary information pertaining to the power grid and
state estimation is discussed. In Section IV we discuss our
proposed multi-agent system for FDI attack detection. In
Section V the experiments used to validate the proposed
system are discussed along with the results obtained. In
Section VI this paper is concluded with a discussion of our
findings and aspects for future research.

2. RELATED WORK
Liu et al. [2], study the problem of False data Injection

(FDI) attacks that target measurement data used in DC
state estimation and demonstrate that if an adversary has
knowledge of the network topology, he can craft an FDI at-
tack to bypass the BDD schemes in place. Since Liu et al.
introduced the idea of undetectable FDI attacks, a lot of
research effort has gone into this area. [6] shows that en-
crypting a carefully selected set of measurement devices can
enable detection of FDI attacks against DC state estima-
tion. The authors show that the number of measurements
that need to be protected to achieve FDI attack detection is
equal to the number of total state variables. The strategy in
[6] is extended in [7] to maximize the number of encrypted
meters. Dan et al. [7] take into account the fact that the
power network has a large number of measurement devices
and encryption of as many devices as state variables is not
always practical or economically feasible. They propose al-
gorithms to deploy encrypted devices in parts of the network
that their usefulness is maximized. In addition [8] provides
solutions that an operator can use to arbitrarily select crit-
ical meters to protect so that an undetectable FDI attack
cannot be launched. Furthermore a detection framework
employing a security manager, a managed switch and secu-
rity agents running alongside critical nodes (controllers and
edge nodes) was proposed by Wei et al. [9]. Each critical
node is monitored by a security agent connected to the secu-
rity manager through a managed switch capable of separat-
ing external and internal transmission. The security man-
ager is protected by conventional IT solutions and provides
access control, firmware monitoring, vulnerability patches
and security policies to security agents which in turn moni-
tor the critical nodes.

In [10] Yang et al. studied false data injection attacks
and defense mechanisms. Specifically, they design attack
strategies the inflict maximum damage and propose a de-
fense mechanisms to make critical sensors more resilient to
such attacks. The authors also design spatial- and temporal-
based detection algorithms that the control center can em-
ploy to detect and identify stealthy attacks. A heuristic

based false data injection attack detector is proposed in [11].
Kosut et al. leverage the sparse nature of the FDI attack
and propose a detection test based on the L∞ norm compu-
tation as opposed to the L2 norm. The authors show that
the L∞ norm accurately detects the presence of an injected
sparse vector. In [12], a strategy based on formation con-
trol is proposed to identify corrupted measurements from
phasor measurement units (PMUs). Specifically a flocking-
based modeling paradigm is used to identify corrupted data
during grid transient state. However, transient periods in
the power grid are brief, limiting this technique to narrow
scenarios. [13], exploits the constraints in power network
topology to enhance the state estimator’s capacity for bad
data detection. Liu et al. proposed an adaptive partitioning
state estimation (APSE) technique to detect bad data injec-
tions in the smart grid. Specifically, the APSE partitions the
power network into several subsystems, and the Chi-squares
test for bad data detection is used to detect bad data for
each subsystem. Upon detection of bad-data, the subsys-
tems are re-partitioned over several iterations until the bad
data is located.

The multi-agent system for FDI attack detection proposed
is practical to deploy because it leverages on the existing
communication channels among substations stipulated in
the IEEE standard [14]. In addition, communication among
substations does not need to rely on encryption because any
attack on communication compromises every measurement
making it easily detectable by the multi-agent system during
state estimation. In contrast to the APSE method proposed
in [13], our solution is scalable since the node degree does
not increase with the scale of the power system [15]. More-
over Liu et al. show that the APSE can only detect bad
data within a single transmission line and not the entire net-
work. The iterative nature of the APSE also makes it costly
to compute. Using the DC power flow model for the IEEE
9-bus system benchmark [16], we demonstrate that an unde-
tectable FDI attack vector that bypasses the L2 norm based
bad data detector for the entire power grid is detectable by
the L2 norm bad data detector for each agent.

3. PRELIMINARIES

3.1 Overview of the Power Grid Infrastruc-
ture

Figure 1: Structure of a Power Grid including communica-
tion infrastructure

Figure 1 shows the basic structure of a power grid includ-
ing the communication infrastructure commonly employed.
The key components of the smart grid are: control center,
substations and field equipment. The control center com-
prises a Supervisory Control and Data Acquisition (SCADA)
Unit and a state estimator. The control center receives data



such as meter readings, and alarms from the substations
through a network. The data received at the control cen-
ter is used by the state estimator to estimate the operation
condition of the power grid. The SCADA unit uses infor-
mation provided by the state estimator to issue commands
(open/close relays, adjust generator or load) to substations.
Substations are made up of power equipment and communi-
cation equipment such as remote terminal units (RTU) and
Intelligent Electronic Devices (IED) (examples of IEDs are;
Phasor measurement units (PMU), relays) that can com-
municate with each other. Devices in substations directly
interact with field equipment to effect commands issued by
the SCADA unit.

3.2 DC State Estimation
In State estimation based on the DC power flow model, we

can correlate the measurement vector z and the state vector
x of a power system using the following linear regression
model.

z = Hx + e (1)

where H is the m× n measurement Jacobian matrix which
encapsulates the topological information of the power sys-
tem [17], e.g., susceptance of each transmission line. We
represent z as an m× 1 vector with each entry being a me-
ter measurement. In this work, The vector z comprises the
measurements of real power flows at the receiving and send-
ing end of each transmission line and real power injections
at each bus. x is an n × 1 vector with each entry being
the phasor angle at each substation. Also, e is an n × 1
measurement error associated with each entry in z; we as-
sume the measurement error is Gaussian noise. Using the
weighted least square criterion [18], a state estimate x̂ can
be computed as follows.

x̂ = (HTRH)−1HTRz (2)

where R = diag(1/σ2
i ), σ2 is the variance of the meter errors

and i = 1, ...,m.
Meter errors, incorrect configurations and maliciously in-

jected measurements introduce bad data which affects es-
timated states [1]. There are several techniques in place
for detecting bad data in the power grid. A widely used
technique computes a residual between the observed and es-
timated measurements and uses its L2 norm to detect bad
data. When bad data is present, the L2 norm increases be-
yond a preset threshold τ and converges in the absence of
bad data.

||z−Hx̂|| > τ (3)

3.3 False Data Injection (FDI) Attack
An FDI attack against the power grid modifies the mea-

surement vector z transmitted to the control center by in-
jecting an attack vector a such that an incorrect measure-
ment vector za is received. [2]

za = Hx + e + a (4)

In [2], Liu et al show that while a randomly selected attack
vector a is generally detectable by the residual generation
based bad data detection system, instances of the attack
vector a maybe undetected. Specifically if a is a linear com-
bination of the rows in the topology matrix H it will bypass

the BDD system. To construct an undetectable attack vec-
tor a, the attacker needs to create an n × 1 vector c such
that the entries in c correspond to targeted state estimates
in x resulting into

a = Hc (5)

If a −Hc = 0, the attack vector a is undetectable by the
BDD system provided the original measurement z passes
BDD. The L2 norm of the residual from theorem 1 of [2]

||za −Hx̂|| = ||z + a−H(x̂ + c)|| (6)

= ||z−Hx̂ + (a−Hc)|| (7)

= ||z−Hx̂|| ≤ τ (8)

4. PROPOSED MULTI-AGENT SYSTEM FOR
FDI ATTACK DETECTION

4.1 Multi-agent System Architecture
In today’s power grids, inter-substation communication

plays a key role in ensuring local protection at each substa-
tion[14]. When a relay in a substation performs protection
activities such as opening a circuit breaker to remove a tran-
sient short-circuit fault, the substation reports this event to
all its neighboring substations. The purpose of this com-
munication is to ensure that when protection activities fail,
neighboring substations can perform back-up protection to
prevent faults from propagating to large areas.

(a) An example 5-bus System

(b) A sub-system from bus 4

Figure 2: Use agent to build a sub-system from a power grid

Current power grids rely on off-the-shelf computing and
communication networks to deliver measurements to con-
trol centers. On top of this computing infrastructure, we
can install a software agent in each substation. Each agent



stores the measurements from its substation. In addition to
delivering these measurements to the control center, it deliv-
ers them to agents deployed at the neighboring substations
periodically.

Based on the measurements collected from neighboring
substations, each agent can build its own sub-system in
which the system state, i.e., the phasor angle of each substa-
tion, is consistent with the state from the whole system. In
Figure 2a, we use a 5-bus system as an example to explain
the concept. This power system has 5 buses, 5 transmission
lines, 3 load units, and 3 generators. With respect to the
DC power flow model, we can have 15 measurements (con-
sidering real power flows at the receiving and sending ends
of each transmission line and real power injections at each
bus). In the figure, we highlight the measurements with red
rectangles and letters. Note that the measurement of power
injected at a bus is calculated by taking away power con-
sumptions from power generations. For example, at bus 4,
we have z14 = PG4 − PL4, where PGi and PLi represent
power generations and consumptions at bus i.

In Figure 2b, we demonstrate how the agent at bus 4 build
a sub-system exclusively based on the measurements from
bus 3 and bus 5. The purpose of building the sub-system
is that (1) the agent uses the state estimation of the sub-
system to obtain the same phasor angle of the involved buses
as estimated by the control center when no attacks occur;
and (2) the agent can detect compromised measurements
in this sub-system while the false data injection attack can
bypass state estimation for the whole grid. The sub-systems
are created based on the procedure stated in Table 1.

Table 1: Procedure to Build Sub-systems for Agents

Procedure: generate sub-system for agent at bus i

(1) Include bus i and its neighboring buses;
(2) Include the transmission lines that connect the

buses selected at (1);
(3) Keep unchanged the real power flow measurements

at the sending and receiving end of selected trans-
mission lines;

(4) For bus j 6= i
(5) For transmission line k not selected at (2)
(6) If power flow P at line k is delivered into

bus j
(7) Increase power injection at bus j by P
(8) Else
(9) Decrease power injection at bus j by P
(10) EndIf
(11) EndFor
(12) EndFor

Using the procedure in Table 1, we build a sub-system for
bus i which comprises bus i itself, its neighboring buses, and
transmission lines that connect them. In this sub-system,
we still use the measurements at the receiving and sending
end of transmission lines from the whole power grid. How-
ever, the power injection at the neighboring buses of bus i is
adjusted with the power flowing to the rest of the power sys-
tems (blocked by a transparent rectangle in Fig. 2b), based
on steps (4)-(12) in Table 1. Following this procedure, we
can build the sub-system for each bus. In the sub-system,

the power flow equations are maintained for each bus, from
which we can obtain the same phasor angles as those ob-
tained during state estimation for the whole grid.

4.2 Threat Model
We don’t trust the communication networks that con-

nect control centers and power grid devices in substations.
Consequently, we assume that attackers can compromise
measurements while they are delivered to the control cen-
ter. Also, we assume that measurements exchanged between
agents at different substations are not trusted. Even though,
agents at substations collect untrusted measurements from
other substations, the compromised measurements which are
crafted based on the topology of the whole power grid can
fail to bypass the bad data detection during state estimation
performed at the sub-systems.

We assume that an agent uses local sensors to collect
trusted measurements from its own field site. In other words,
we don’t consider the attack case in which attackers can
physically manipulate sensors.

4.3 Formal analysis
In this section, we demonstrate how we use state esti-

mation at the sub-systems to detect false injection attacks
that are designed to bypass bad data detection during state
estimation for the whole power grid. Consider a power sys-
tem with n substations, m measurements and b transmission
lines. As shown in Section 3.2, the measurement vector z
and the state vector x are correlated by the Jacobian ma-
trix: z = Hx + e. By following the procedure outlined
in Table 1, we can divide a power system of n substations
into n sub-systems. Let i denote the ith substation where
i = {1, . . . , n}. Based on the topology of the ith sub-system,
we can construct its own Jacobian matrix H′i. The entry in
the state vector x′i is directly taken from the corresponding
entry from x. However, as shown in Table 1, the entry in
the measurement vector z′i is calculated from the entries in
z. Consequently, for the ith sub-system, the measurements
and state variables are correlated by its Jacobian matrix:
z′i = H′ix

′
i + e′i.

When attackers perform FDI attacks, they decide the at-
tack vector a based on the measurement Jacobian matrix H
of the entire power grid. As shown in Section 3.2, in order
to bypass the bad data detection, the attack vector a needs
to satisfy the condition a = Hc [2].

When measurements are compromised, a corrupted mea-
surement vector za = z + a is obtained. Under our threat
model, the compromised measurements are delivered to the
control center and the agents deployed at the substations.
Consequently, in the sub-system, we construct the compro-
mised measurement z′a,i based on the procedure in Table 1.
Based on the measurements collected by the agent in each
substation, we can perform state estimation and bad data
detection on each sub-system. The approach we propose re-
quires the attack vector to satisfy the condition a′ = H′ic

′
i

at each subsystem a long with a = Hc. Because a = Hc
does not ensure that a′i = H′ic

′
i for each sub-system (where

a′i = z′a,i − z′i), we can detect a false data injection attack
if the compromised measurements fail to bypass bad data
detection for at least one agent.



5. EXPERIMENTAL EVALUATION

5.1 Case study
To demonstrate how agents use state estimation at their

sub-systems to detect false data injection attacks, we use the
IEEE 9-bus system , whose transmission topology is shown
in Fig. 3. This power system has 9 buses, 9 transmission
lines, 3 generation, and 3 load units.

Figure 3: Distribution of agents for a 9-bus system

There are 8 state variables (we assume that the phasor
angle of the slack bus is 0) and 18 measurements. We extract
the measurement matrix H from MATPOWER. In Table 2,
we show the values in one randomly selected attack vector a.
The attack vector is injected into the observed measurement
z to obtain za.

Table 2: Data for FDI attack generation

c a = Hc z za = z + a
1 -17.3611 0.6700 -16.6911
0 10.8696 0.2897 11.1593
1 0.0000 -0.6103 -0.6103
0 0.0000 0.8500 0.8500
0 0.0000 0.2397 0.2397
0 0.0000 -0.7603 -0.7603
0 -16.0000 -1.6300 -17.6300
0 0.0000 0.8697 0.8697

-11.7647 -0.3803 -12.1450
-17.3611 0.6700 -16.6911
16.0000 1.6300 17.6300
0.0000 0.8500 0.8500
39.9954 0.0000 39.9954
-10.8696 -0.9000 -11.7696
0.0000 0.0000 0.0000
0.0000 -1.0000 -1.0000

-16.0000 0.0000 -16.0000
-11.7647 -1.2500 -13.0147

Based on the state estimation performed for the whole
power system, we cannot detect this attack vector because
the L2 norm (weighted sum of squared errors) is within the
BDD threshold (with the threshold τ set at 1.0228−2). In
Figure 4, we show that state estimation performed by agents
can detect this attack vector. The x-axis indicates the in-
dex of the agent; the y-axis indicates the weighted sum of

squared errors of the state estimation performed at the cor-
responding agent. Because in the sub-system monitored by
agents 1, 2, 3, 4, 5, 6, 7, 8, and 9, we have a′i 6= H ′ic

′
i. The L2-

norm at these agents becomes very large making it possible
to detect compromised measurements.
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Figure 4: Bad-data detection results for agents in IEEE 9-
bus system

5.2 Evaluation of Detection Results
To further evaluate the proposed multi-agent systems, we

select IEEE 9-bus, 14-bus, and 30-bus systems, whose base-
line profiles are included in MATPOWER [16]. For each
power system case, we randomly construct 1000 attack vec-
tors, a using Equation 4, such that Equation 5 is satisfied.

In each power system case, we perform on behalf of each
agent the state estimation of its corresponding sub-system.
If the L2-norm from the state estimation is larger than the
BDD detection threshold, we detect the false data injection
attacks.

1 2 3 4 5 6 7 8 9 101112131415161718192021222324252627

Agent Index

0

0.2

0.4

0.6

0.8

1

1.2

F
ra

c
ti
o
n
 o

f 
a
tt
a
c
k
s
 d

e
te

c
te

d

9-bus

14-bus

30-bus

Figure 5: Probability for successful attack detection by in-
dividual agents for the 9-bus, 14-bus and 30-bus system

Figure 5 shows the probability that agents can successfully
detect an attack for the IEEE 9-bus, 14-bus, and 30-bus
power systems. The markers show the actual probability
(number of successful detections/number of attacks) com-
puted for a corresponding agent. The x-axis is the agent
index, and the y-axis is the fraction of attack cases consid-
ered. From the results obtained, agents with more intercon-
nected substations have a higher FDI attack detection prob-
ability in comparison to agents with less than 3-substations



interconnected. Individual agents achieve detection for the
overall system, with probabilities 0.82, 0.94 and 0.90 for the
9-bus, 14-bus and 30-bus systems respectively for FDI at-
tacks completely undetectable by the power system in the
absence of the proposed multi-agent system. Although at in-
dividual agents detection is not always 100%, overall detec-
tion is always successful since the proposed strategy achieves
detection by evaluating the bad data detection result from
each agent. In Figure 6 every instance of the FDI attack
generated is detected by at least one or more agents making
detection successful if carried out collectively. 1000 attack
scenarios are simulated against the system and detection re-
sults for each agent for each attack scenario evaluated.
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(a) 9-Bus System
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(b) 14-Bus System
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Figure 6: Number of agents that detected each individual
FDI attack

Figures 6a, 6b , 6c, show the number of agents that detect
a range of attacks for the 9-bus, 14-bus and 30-bus systems
respectively. The x-axis shows the number of agents that
can detect an attack, and the y-axis is the index for each of
the 1000 FDI attack scenarios considered. In other words,
for a point (x0, y0) on Figure 6, y0 cases are detected by less

than or equal to x0 agents. All agents simultaneously carry
out detection for all attack cases and the collective result
evaluated. For every single FDI attack, there is an agent or
group of agents that can detect it.

Figure 7 shows the number of attacks that an agent at
each bus detects. The index of each bus is plotted on the
x-axis while the y-axis shows the number of attacks that
the agent at this bus detects. The detection is distributed
over all buses almost evenly. In this case, it is challenging
for attackers to bypass the multi-agent detection mechanism.
This means that an attack targeting any bus can be detected
by at least one agent provided its a member of the sub-
system
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Figure 7: Number of attacks successfully detected at each
bus by the corresponding agents

To further evaluate the performance of our FDI attack
detection strategy the average time taken by all agents to
carry out state estimation (agents carry out state estimation
simultaneously) is compared to the time taken for entire
grid state estimation. The results obtained indicate that
for the IEEE 9-bus, 14-bus and 30-bus system benchmarks
considered, the time taken for the agents to carry out state
estimation is less than the time it takes for entire grid state
estimation. In the 9-bus system, while agents require 0.215
seconds on average, the entire grid requires 0.23 seconds.
For the 14-bus system, agents take 0.2000 seconds while the
entire grid takes 0.2200 seconds and finally 0.2261 seconds
against 0.4300 seconds for the 30-bus system.

6. CONCLUSION
A multi-agent system for false data injection attacks in

the power grid is proposed. Each substation is assigned an
agent created from a topology formed by a substation and
its neighboring substations. Agents are equipped with com-
munication capability and facilitate communication among
substations. In addition, agents compute state estimates for
their respective substation and share this state information
with each other. For each agent, the state estimate must
pass bad data detection. Measurement data is checked by
each of the agents and is only processed for state estimation
if it passes state estimation at each Agent. The detection
technique is demonstrated using the DC power flow and DC



state estimation data of the IEEE 9-bus, 14-bus and 30-bus
systems.

In future work the multi-agent system will be extended
to include attack identification because the agent detection
system currently only detects the presence of the attack but
cannot identify the exact measurement affected. The find-
ings presented in this paper are based on simulations, the
multi-agent system will be implemented on real-world hard-
ware for further analysis.
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