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ABSTRACT
We present an assurance methodology for producing signif-
icantly more secure implementations of SCADA/ICS proto-
cols, and describe our case study of applying it to DNP3, in
the form of a filtering proxy that deeply and exhaustively val-
idates DNP3 messages. Unlike the vast majority of deployed
proprietary DNP3 implementations, our code demonstrates
resilience to state-of-the-art black-box as well as white-box
fuzz-testing tools.

1. INTRODUCTION
DNP3 [7] is a complex ICS protocol commonly used through-

out the US power grid. Recent security investigation of DNP3
production implementations [5] revealed that most of these
implementations were vulnerable to attacks via malformed
payloads, due to a wide variety of input validation bugs. Out
of dozens of commercial implementations, only a few were
free of critical defects. These vulnerabilities had dire im-
plications, as they affected the master controllers rather than
merely devices in substations [12], and could thus have a dev-
astating effect on the stability of the power grid as a whole.
Altogether, over 30 CVEs have been reported for DNP3 in
2013–2014.

Whence the vulnerabilities? We undertook a study of
these vulnerabilities and concluded that a new breed of DNP3
parsers was necessary to mitigate these defects. We also came
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to the conclusion that the root causes of these defects were,
in part, due to the syntactic complexity of the protocol, and
of the misreadings of the protocol’s syntactic complexities by
implementors. Even though the DNP3 standards strive for
simplicity and clarity, their unwitting choices of certain syn-
tactic constructs undermined these intentions and resulted
in preventable bugs. Notably, implementations without de-
fects were those that implemented conservative subsets of
the DNP3 specification.

When approached as a formal language to be parsed, DNP3
payloads turned out to have syntax slightly but crucially dif-
ferent from what the structural diagrams in the specification
implied, with essential validity requirements hidden in text
accompanying these diagrams or occurring elsewhere in the
standards documents. It became clear to us that many valid-
ity requirements for the DNP3 payloads that could have been
expressed in syntactic terms, and checked up front—before
the crafted bug-triggering malformed payloads could pene-
trate deeper into the control systems’ logic—were not clearly
identified by the standards as such. As a result, easily check-
able malformations pass the initial “sanity checks” and cause
crashes and potentially exploitable memory corruptions.

Whacking vulnerabilities with better validation. To ad-
dress these issues, we developed and employed a new soft-
ware assurance methodology for designing protocol parsers.
Our method begins with a careful, critical reading of the stan-
dard that elicits the full set of requirements that can be vali-
dated at the syntax-checking stage—before control function-
ality is exposed to malicious inputs. We proceed with a gram-
matical implementation of the parser so that it can enforce these
requirements correctly and exhaustively before any other pro-
cessing.

We call the derived enhanced syntax of protocol messages
that captures the maximum of possible information about the
message objects’ boundaries, embedding, as well as legitimate
occurrence and co-occurrence the core syntax of the protocol.
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This view is separate from what these objects mean and what
actions they should prompt; it is purely structural. Con-
versely, it aims to capture all structural validity requirements
for protocol payloads, so that they could be checked early
and systematically.

Once this enhanced syntactic view of the protocol is cap-
tured, the parser code can be written to clearly correspond
to the grammar describing this core syntax. This has the ef-
fect of making it clear to both the programmer and the code
auditor exactly what expected input properties have been checked
so far, and which ones are being checked. This approach very
effectively mitigates a notorious source of security bugs: the
mismatch between the programmer assumptions about the
enforced preconditions on the input data vs the actual prop-
erties of such data.

In the course of this work, we identified within the current
DNP3 specification a number of the syntactic pitfalls that put
its implementations at risk. We suggest how to mitigate these
pitfalls.

Bringing best-of-breed parsing to ICS embedded sys-
tems. We implement our DNP3 parser using our Ham-
mer parser construction toolkit. To the best of our knowl-
edge, Hammer is the first toolkit that brings the security and
maintainability benefits of combinatory parsing to production
C/C++ build environments. Thus, our DNP3 parser is the
first to realize this promising approach in embedded and ICS
development.

Isolating the improved parser. Besides hardening our
input-validating DNP3 parser, we also mitigated any unfore-
seen errors in it by isolating the parser code from the rest of
the control application, and the rest of the application from
the raw input buffers, now made exclusively accessible to the
parser, and only to the parser. Thus the application’s control
logic was precluded from accidentally accessing maliciously
crafted and unvalidated data in a raw input buffer via, say, a
memory pointer. This isolation was achieved via our ELFbac
intra-process memory access policy, leveraging separation of
code and data units of the control application at the Applica-
tion Binary Interface level. [3, 4]

The structure of the paper is as follows. We first describe
our core syntax extraction methodology, based on our LangSec
approach. We then summarize the vertical hardening of the
control system’s runtime, based on an ARM Linux industrial
computer. Finally, we evaluate the robustness of our system
w.r.t. state-of-the-art fuzzers using both generic fuzzing (with
American Fuzzy Lop) and DNP3-specific fuzzing (using the
custom Aegis tool). We conclude with recommendations for
production deployment of our methodologies.

Summary of contributions. To the best of our knowledge,
our work is a first in assurance of ICS protocols in several
methodological respects. In particular, it is the first work in
the ICS domain to:

• base the implementation of an ICS protocol on the parser
combinator approach and use it to generate functional
unit-testing of the implementation;

• analyze the syntax of an ICS protocol from the Chom-
sky hierarchy point of view and apply this analysis to
preventing security flaws in the implementation;

• apply the security design pattern that enables the policy
of isolating the parser from the control application logic;

• use an intra-process memory protection policy in a con-

trol application, providing additional guarantees of en-
forcing intended behavior beyond SELinux, with our
novel ELFbac policy mechanism.

As a consequence of the above, fuzz-tesing of our DNP3
input-handling code demonstrated superior resilitency com-
pared to such code in the majority of commercial DNP3 prod-
ucts.

2. APPLYING LANGSEC TO DNP3:
A DEEPER UNDERSTANDING OF THE
PROTOCOL

LangSec is a view on software security that focuses on
identifying and handling inputs safely. [14] It gives rise to
a development methodology that posits that the design of
input-handling software must start with analyzing the gram-
mar of the protocol, gathering all syntactic requirements un-
der this grammar, and writing the parsing/validating code to
resemble the grammar as closely as possible. The latter is
best achieved by employing the parser combinator approach,1
which has been implemented for a variety of production lan-
guages, including C++, Java, Python, etc. For our DNP3
case study, we used the Hammer parser construction kit,2 de-
signed specifically for the needs of C/C++ programmers, but
also offering bindings for other languages.

Simply put, LangSec posits that all structural require-
ments to protocol payloads are syntax, and must be vali-
dated as such, systematically and with the right recognizers
for the grammar, before any processing occurs.

The LangSec viewpoint further holds that more syntac-
tically complex protocols are liable to lead to buggy and
exploitable implementations. When the nature of validity
checks for protocol messages is unclear, the likelihood in-
creases of an implementation failing to check what subse-
quent code assumes. Therefore, LangSec recommends syn-
tactically simpler formats that stay within the regular or
context-free classes of languages.3 Syntactic elements of a
protocol that introduce context-sensitivity must be avoided
at the design stage, handled with utmost care if they must
be implemented—and, if possible, filtered out from the input
language when already deployed. A LangSec analysis of a
protocol tends to point out these elements as pitfalls, and a
number of famous vulnerabilities suggest that this analysis
is correct. [11]

We applied this methodology to DNP3, coming up with a
grammatical, combinator-based parser implementation from
the protocol specification. In doing so, we also covered the
specification’s prose requirements wherever these touched
on mutual co-occurrence or relationships between elements.
From our reading of the specification and during implemen-
tation, we discovered that many structural requirements are
not described as syntax and do not appear in the diagrams.
Instead they are hidden away in the text of the standard,
sometimes listed between rules concerning the behavior of
an implementation or the effects of a message.

We view all structural validity requirements as syntactic va-
lidity ones. Thus any requirements concerning the interpre-

1See [8] for a practical description, and [16, 10] for functional
programming foundations of parser combinators.
2Designed and implemented by the 4th and the 5th authors.
3I.e. those that can be fully parsed by a finite state machine
or a pushdown automaton, respectively.



Figure 1: DNP3 protocol layers (Fig. 0-2 in IEEE 1815-2012)

Figure 2: DNP3 fragment structure (Fig. 4-4 in IEEE 1815-
2012)

tation of payload object boundaries and embedding, as well
as whether an object may or may not occur in a particular con-
text should be extracted, and formalized in the recognition
front-end. We stress that this not only minimizes exposure
of the rest of the code to unwarranted assumptions, but also
has strong potential to warn of ambiguities and pitfalls in the
specification text. Indeed, during this process of grammati-
cal formalization, we found a number of problem spots that
corresponded to many vulnerabilities found in DNP3 parsers
by previous fuzzing efforts.

Several new combinators were added to or implemented
on top of the Hammer combinator library, some to support
DNP3 specifically, others of general utility.

2.1 Extracting core DNP3 syntax
At the outset, diagrams of DNP3 packets such as Figures 1

and 2 made their syntax look clear enough, hardly more com-
plex than that for the TCP/IP family. DNP3 consists of a
simple three-layer protocol stack, each layer adding headers
to a higher-level payload.4

An application-level message may stretch over multiple
packets, called fragments. A fragment’s high-level structure,
as shown in Fig. 2, consists of the application header, followed
by a variable number of data “objects”, which are grouped
by type, each group preceded by a common object header.
This structure could be described by the following regular
expression:

AppHeader (ObjectHeader Object∗)∗

As we will see, of course, this view is far from complete.

4While our implementation covers all three layers, and the
link and transport layers have interesting properties in their
own right, we focus on the rich application layer structure for
our exposition.

The application header consists of control flags, a fragment
sequence number, and most importantly the function code, a
number that specifies the kind of action to take upon receipt
of the message. A special function RESPONSE is reserved for
returning data from an outstation, e.g. from reading a sen-
sor. Here we meet the first complication. In response mes-
sages only, the application header includes an additional field
called internal indications (IIn), which the outstation uses to
report faults and various other conditions. The allowed com-
binations of control flags also differ between requests and
responses. Thus the two types of application headers can be
described with the following grammar rules:

ReqHdr → SeqNo ReqFlags ReqFun
RspHdr → SeqNo RspFlags RspFun IIn

This is close to our implementation, though the whole truth
includes further special cases for the function codes CONFIRM
and UNSOLICITED_RESPONSE.

In addition to header fields, the function code determines
allowed and expected types of data objects to follow. Some
functions expect no objects, others have complex require-
ments, and one of the most common functions (READ) takes
object headers only. It is worth noting that official pseudo-
code published to clarify the parsing process fails to properly
account for the READ case.5 In our approach we individually
develop grammatical descriptions of the object structure for
each function code, allowing us to handle wildly differing
rules at function granularity. Duplication is avoided by the
use of custom combinators.

Unfortunately, much of the standard is written at odds to
our view that the function code determines message struc-
ture. Instead, requirements on the context in which objects
can occur are attached to the descriptions of the object types.
For example, for object group 50, time and date, section
A.23.1.2.3 implies that they can appear in read requests and
responses; it goes on to state that they may also appear in
write requests. As per the discussion above, this information
is part of our core syntax, and we encode it in the grammar
rules for the READ, WRITE, and RESPONSE functions. The sup-
plementary Table 3 of AN2013-004b summarizing the map-
ping of object types to function codes helped to clarify their
expected grammatic relationship; we essentially inverted this
table, uncovering some omissions in the process.6

Relationships between function codes and their objects can
be more complex. The SELECT function, for instance, initi-
ates output actions, which follow three basic forms. Whereas
analog signals are supported through a straight-forward set
of objects (group 42), binary outputs such as relays are con-
trolled either through a complex structure called CROB or
a variant consisting of “pattern control” objects (PCB/PCM).
From the descriptions of the SELECT function code and the
aforementioned object types, we arrive at the following gram-

5AN2013-004b states in section 2.4.2 that “no object data [is]
to parse” only for range specifier code (RSC) 6, “all”. For the
common case of requesting values from certain indexes, RSC
0–5 and 7–9, it calls for the fragment to be discarded when
there is no object data.
6E.g. group 120, variant 1, authentication challenge, for
RESPONSE; group 120, variants 3 and 9, aggressive-mode au-
thentication, for CONFIRM (cf. Fig. 7-16 in [7]).
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Figure 3: A crafted APDU-less link-layer packet from [5].

mar for a SELECT request’s object arguments:

Select → Action∗

Action → AnalogOut | Crob | PcbPcm
PcbPcm → Pcb Pcm+

Note how one or more PCM objects must follow a PCB.7
Apart from that, we allow the three types of actions to be
mixed freely and also allow empty requests (no actions).

The grammatical approach starts paying off even at a high
level. One of the flaws found by [5] was that a packet with cor-
rect link- and transport-layer headers but zero-length APDU
(application layer message) would cause unhandled excep-
tions in certain implementations. Such a packet (with cor-
rect checksums) is depicted in Fig. 3. The specification re-
quires a transport layer payload to consist of no less than
one byte, implying that at least one APDU should be present,
but the relevant checks were apparently forgotten by some
implementors—a structure-checking vulnerability of omis-
sion or lapse of attention.

By contrast, our approach requires explicitly describing
the packet’s structure at every level. It thus refocuses the
programmer’s attention on the particulars of the structure,
making errors by omission less likely.

The parser code that we then write is little more than the
specification of this core syntax—in C/C++ code that is ready
for compilation.

2.2 Code that looks like the grammar
The hallmark of the LangSec approach to protocol im-

plementation is that the input-handling code charged with
structural validation of incoming payloads literally looks like
the grammar of the valid inputs. Such code has tremendous
advantages for both the programmer and the auditor: it is
succinct, and at every line and indeed at every expression, it
is obvious what portion of input and which of its properties
are being validated.

The above principle guided our implementation. We used
the Hammer parser construction kit to both describe the ex-
tracted core syntax of DNP3, and, at the same time, to produce
our validating parser for this syntax.

We give two examples to illustrate the resulting code style.
The first, in Fig. 4, shows the parsing code for the application
header, including the cases for confirmations and unsolicited
responses. It should be clear from the figure that the code
essentially matches the grammar shown earlier. It expresses

7This is a good example where a structural (i.e. syntactic)
requirement appears in text that seems otherwise concerned
with semantics or behavior. From the description of object
group 12, variant 2, pattern control block: “Executing controls
is initiated by sending . . . a single [PCB] object followed by one
or more Pattern Mask objects” (emphasis ours).

seqno = h_bits(4, false /* unsigned */);
conac = h_sequence(seqno, conflags, NULL);
reqac = h_sequence(seqno, reqflags, NULL);
unsac = h_sequence(seqno, unsflags, NULL);
rspac = h_sequence(seqno, rspflags, NULL);
iin = h_sequence(h_repeat_n(bit, 14),

reserved(2), NULL);

req_header =
h_choice(h_sequence(conac, confc, NULL),

h_sequence(reqac, reqfc, NULL), NULL);

rsp_header =
h_choice(h_sequence(unsac, unsfc, iin, NULL),

h_sequence(rspac, rspfc, iin, NULL), NULL);

Figure 4: The Hammer-based code for handling the DNP3
application headers.

crob = h_sequence(h_bits(4, false), // op type
bit, // queue flag
bit, // clear flag
tcc,
h_uint8(), // count
h_uint32(), // on-time [ms]
h_uint32(), // off-time [ms]
status, // 7 bits
reserved(1),
NULL);

Figure 5: The DNP3 CROB object (IEEE 1815-2012) and the
Hammer-based code for handling it.

the requirements on the header structure, at the same time
specifying this structure explicitly.

The second example in Fig. 5 is the structure of the CROB
objects that directly control binary outputs. This group 12
object consists of a variety of fields describing actions such
as opening or closing a relay or producing a strobing signal
of a given duration and periodicity. Again, the code shown
both parses CROB objects and validates that they have correct
structure.

This coding style is used for all fields and syntactic ele-
ments from the ground up, starting with individual bit flags.
Whereas their semantics is outside the parser’s scope, their se-
quence and any variations are described in the same amount
of detail as the more complex objects. For instance, Fig. 6
shows the handling of the bit flags.

If anything, this code is more concise than typical C/C++
binary parsing code based on pointer arithmetic and bitmask
matching. Yet it is also a lot more readable, and less likely to
lead the programmer or the auditor to overlook or misinter-
pret a syntactic check, leading to Heartbleed-like vulnerabil-
ities.



/* --- uns,con,fin,fir --- */
conflags = h_sequence(bit,zro,one,one, NULL); // CONFIRM
reqflags = h_sequence(zro,zro,one,one, NULL); // fin,fir
unsflags = h_sequence(one,one,ign,ign, NULL); // UNSOL’TD
rspflags = h_sequence(zro,bit,bit,bit, NULL);

Figure 6: The handling of flags in the Hammer-based code.

pcb = dnp3_p_g12v2_binoutcmd_pcb_oblock;
pcm = dnp3_p_g12v3_binoutcmd_pcb_oblock;
anaout = dnp3_p_anaout_oblock

select_pcb = h_sequence(pcb, h_many1(pcm), NULL);
select_oblock = h_choice(select_pcb , crob, anaout, NULL);
select = h_many(select_oblock);

Figure 7: Defining the SELECT function in Hammer.

2.3 Refining the DNP3 specification
The above approach has the power to warn the program-

mer of the specification pitfalls and ambiguities that may lead
to flaws in structural validation of inputs. It makes all struc-
tural validity requirements explicit, whereas a casual reading
may leave them masked, leading to vulnerabilities. At the
same time, it exposes opportunities and needs for clarifica-
tion of the standard.

The SELECT function, introduced in Section 2.1, presents an
example. Recall the grammar given earlier. It immediately
poses the following questions:

1. Are empty SELECT requests considered valid? Should
they be passed to the processing code or rejected out-
right during input validation?

2. Can the same request contain multiple PCB-and-PCM
blocks?

3. May a request mix PCBs, CROBs, and analog outputs?

Our methodology results in the code shown in Fig. 7, again
mirroring the grammar closely. Alternative answers to the
above questions would be easy to implement by making sim-
ple modifications.

For another example, we consider the case of the CTO
object. Responses may carry objects that include a relative
timestamp, e.g. group 2, variation 3, binary input event—
with relative time. The specification states that “a preceding
common time-of-occurrence (CTO) object, group 51, estab-
lishes the basis of the relative time.” This seemingly implies
that the CTO object is required; however, many current im-
plementations are known to accept relative timestamps with-
out a CTO—using some default as the reference. Moreover,
the specification does not state whether multiple CTO objects
are permitted within the same message, whether the CTO
should immediately precede timestamped objects, or whether
or where objects without relative timestamps are permitted.
This corresponds to a grammar like the following for the ob-

jects of a RESPONSEmessage:

Response → RspObject∗

RspObject → RelativeEvent | Other | CTO
RelativeEvent → . . . RelativeTime

Other → . . . (no timestamp)

The above is what our parser currently implements in or-
der to support all existing deployments. However, guarding
against a missing CTO object becomes an obvious require-
ment after this analysis. Prior to it, overlooking it was easy,
and has indeed led to implementation flaws [5]. In addition,
the stated ambiguities should be clarified. Different options
easily present themselves. For instance, requiring the CTO
to be grouped immediately before a block of relative-time
objects would look similar to the SELECT case:

Response → RspObject∗

RspObject → Other | withCTO
withCTO → CTO RelativeEvent+

A maximally permissive grammar enforcing only the require-
ment that a CTO be present somewhere before any relative
timestamp can also be realized:

Response → Other∗ withCTO∗

RspObject → RelativeEvent | Other
withCTO → CTO RspObject∗

Thus the LangSec approach not only results in readable
parsers that make it obvious which input properties are checked
by every statement and every function call, but also warns
the implementor of the potential ambiguities in the standard
and naturally suggests options for clarification to standards
authors.

3. SYSTEM ARCHITECTURE SUMMARY
The primary principle of our study was to implement ver-

tical integration of security measures: a set of features dis-
tributed across the systems components and supporting each
other to implement a security policy operating from the ker-
nel boot time throughout the control application’s runtime.

In particular, we combined our intra-process ABI-based
memory protection technology of ELFbac, our input-validation
assurance methodology of LangSec, with the proven Grsecu-
rity/PaX Linux kernel hardening.

Each of these technologies can be applied independently,
but they work best in concert. ELFbac [4] enforces program-
mer intent with respect to data flows between the applica-
tion’s intra-memory code and data units on the ABI level,
whereas Grsecurity/PaX’s UDEREF feature [15] enforces such
intent between the kernel and the userspace. In turn, the
LangSec methodology of application design ensures that the
security-critical units that handle input validation can be
properly separated to take the best advantage of ELFbac poli-
cies to mitigate potential exploits targeting these units via
crafted inputs.

In order to showcase the composition of these approaches,
we built a Linux-based filtering proxy for the DNP3 protocol.
This proxy applies exhaustive inspection of the DNP3 frames
before passing them between an outstation and a master con-
troller; by this we mean full inspection of all syntactic ele-
ments of the protocol, such as headers and objects, and all



relationships between them specified by the protocol docu-
mentation that can be expressed in the form of a grammar.
This methodology brings the absolute majority of the DNP3
frame validity checks forward, into the input-checking unit
we call the recognizer; this unit is then isolated by an ELFbac
policy from the rest of the processing.

The choice of the filtering proxy as the test application for
the stack policies was made with the view towards generality:
our proxy code is meant to be extensible to other applications
that act on DNP3, such as rewriting proxies and adapters to
other protocols. Such extensions would replace the process-
ing part but keep the input-validating, parsing part of our
code.

Working with a prototype that nevertheless implemented
over 70–80% of the underlying complex DNP3 protocol spec-
ification in a functional, testable way gave us a complex
enough structure to test our security policies.

4. EVALUATION

4.1 Robustness evaluation
We subjected our proxy to fuzz-testing by both the Aegis

generational DNP3 fuzzer developed by Adam Crain and
Chris Sistrunk—with which they demonstrated that most
commercial DNP3 implementations were vulnerable to at-
tacks via crafted inputs—and with the American Fuzzy Lop
fuzzer (AFL) from Michał Zalewski, a state-of-the-art coverage-
guided fuzzer.

These two fuzzers utilize two complementary approaches.
Aegis [2] uses generational models of DNP3 payloads and
was designed for black-box testing of DNP3 implementa-
tions. AFL [18], on the other hand, applies genetic algorithms
guided by code coverage to a set of seed inputs, and is other-
wise protocol-agnostic.

Our baseline for comparison of our implementation with
the existing industry ones was the study of Crain & Sistrunk [5],
summarized below. We used that study as a proxy for com-
paring black-box fuzzing outcomes.

It should be noted that these other implementations had
the benefit of being deployed in the field and had thus been
exposed to at least some level of abnormal inputs even prior
to being fuzz-tested with Aegis. It is reasonable to assume
that such prior exposure resulted in reporting and fixing of
at least some bugs before Aegis had been brought to bear. By
contrast, our implementation stood up to fuzzing freshly “out
of the box”, just after passing its functional unit tests—and
nevertheless showed better resiliency.

Additionally, we used AFL to complement the above black-
box fuzzing with white-box fuzzing. White-box fuzzing
could not provide us with a comparison point with propri-
etary industry implementations, since it would require access
to their sources. However, surviving state-of-the-art white
box AFL fuzzing, which has found major vulnerabilities in
dozens of critical and well-used software projects,8 is itself a
significant achievement.

Generational fuzzing with Aegis. Despite vigorous test-
ing, our application did not suffer from any bugs beyond
the classic resource-exhaustion attack that we subsequently
fixed. Although we hoped for exactly this result due to our
parser construction methodology, we note that few commer-

8See the “bug-o-rama trophy case” section of [18] for the
major bug discoveries attributable to AFL.

Frame defect codes:

A: Specified data not present in object header
B: Integer boundary condition or near-boundary condition
C: Bogus APDU function code
D: Bogus object or qualifier
E: Bogus qualifier code
F: Unexpected addressing (broadcast , self, etc)
G: Unexpected object & qualifier combo
H: Unexpected object data
I: Undersized APDU (0, 1, 2 w/o IIN)
J: Unexpected object and function
K: Invalid link-layer control block
L: Link-layer size/function/payload mismatch

Vulnerability codes:

INF: Infinite or long looping
MEM: Looping causing excessive memory allocation
RAC: Read access
BOV: Buffer overrun
UEX: Unhandled exception
UNK: Unknown

Summary of Selected Flaws:

1 - O { INF } A B
2 - O { RAC } C D E F
3 - O { UEX } F
4 - M { INF } A B G
5 - M { INF } A B
6 - M { BOV } G H J
7 - M { UEX } I
8 - M { INF } A B
9 - O { INF } G
10 - M { INF } A B
11 - M { UNK } A B
12 - O { UNK } G J
13 - M { MEM } A B H
14 - M { RAC } A B
15 - O { INF } A B J
16 - M { INF } A B
17 - O { UNK } K
18 - M { RAC } A B
19 - O { UNK } L

Figure 8: Selected flaws detected in proprietary DNP3 im-
plementations by black-box Aegis fuzzing.

cial implementations approached it in Crain’s and Sistrunk’s
testing [5]—and those that did, unlike ours, implemented
small and restrictive subsets of the DNP3 protocol.

For comparison, we present a selection of flaws found by
Aegis black-box fuzzing of over 20 distinct DNP3 products,
of which only 2 weren’t found to have detectable faults. The
vast majority of the products with faults had multiple distinct
issues that were amalgamated into a single ICS-CERT security
advisory. Overall, 31 public advisories were produced.9

Figure 8 shows a summary of selected flaws, classified by
the kinds of crafted structural defects in the payload that
triggered the flaw, and by the observed effects of triggering
the flaw on the target (a Master controller Mor an outstation O).
The summaries are presented in encoded form; for example,
M { INF } A Bmeans that a Master (M) is put into an infinite
loop (INF) by a crafted frame that specifies the presence of
certain payload data but lacks it (A), and violates a boundary
condition (B).

Note that all of these flaws have their root cause in failure
to structurally validate protocol inputs.

9The full list of published advisories is available at https:
//automatak.com/robus/



Figure 9: AFL asymptotic path coverage after approx. 16
hours.

Figure 10: AFL fuzzer screenshot.

Coverage-guided fuzzing with AFL. Fig. 9 shows that we
ran AFL to approach the asymptotic limit for discovering
new paths given the seed data we provided. No crashes
were recorded. Fig. 10 shows a screenshot of the AFL console
after approximately 16 hours of fuzzing. We verified that the
“hangs” reported in the screenshot are all false positives, due
to a low AFL default timeout for heuristically determining a
“hang”.

Unit test suite. We used a suite of functional unit tests to
test our implementation, and assessed the the completeness
of the unit test suite via gcov coverage. The results for the
core parser are shown in Fig. 11.

4.2 Unit-testing & validation methodologies
Whereas fuzz-testing described above provides an empir-

ical evaluation of the system’s overall robustness, the indi-
vidual components must have their respective unit-testing
and validation methodologies that can be applied to them in

Source directory Coverage

src 1107 / 1225 90.4%
src/obj 465 / 465 100.0%

Figure 11: Coverage of the core parser, via gcov.

isolation. The following describes how our designs provide
for it.

ELFbac policies.
An ELFbac policy is essentially meant to contravene any

accesses by code units to data units not allowed by the policy.
Since both code and data units are, in fact, ABI units of the
executable, the relative positions of either the reference or the
referent within their respective units do not matter, so long
as these are located within their boundaries.

Consequently, the easiest and most comprehensive way to
test an ELFbac policy’s efficacy is to insert memory refer-
ences to disallowed sections into its code units, and assert the
resulting memory traps.

Representing the policy’s allowed accesses as a bipartite
labeled graph between the code sections and the data sections
of an executable, the exhaustive test is easily derived as the
complement of that graph. Specifically, for each specific edge
of this complement graph, we constructed a unit test for the
policy, by placing synthetic violating instructions at the top
of the particular code section.

Moreover, dereferencing pointers in the wrong context is a
known security concern. One additional power of ELFbac is
that, even though it does not control the passing of pointers
to system calls and program units, it should trap attempts by
wrong code units to dereference these pointers if they point
to an ELFbac-labeled data section that contravenes the ac-
cess policy. We tested this behavior by placing contravening
dereferences synthesized according to the above graph.

LangSec parsers.
The LangSec methodology for constructing input-validating

parsers lends itself to exhaustive unit-testing by design. Namely,
under this methodology, parsers for the whole protocol mes-
sages are constructed from the parsers for their simpler parts,
and so on, down to the simplest elements such as integer and
string fields. Consequently, for every protocol unit from the
primitive types up, a definitive function that validates these
elements and these elements alone exits, and can be tested
independently of all others.

In other words, the structural units of the parser correspond
to the structural units of the grammar. In turn, these corre-
spond to natural unit tests for the functions implementing
their parsing and validation.

Validation and resource control.
Small payloads in DNP3 (and other ICS protocols) can re-

sult in construction of large objects, consuming resources on
the receiving endpoint. Thus a resilient application must
resist resource consumption attacks.

From testing our application both via fuzzing and known-
bad payload scenarios, we concluded that building the parser
as a modular structure allows flexibility w.r.t. semantic object
representation (which may be resource-intensive). Creation
of these representations must be explicitly a part of the se-
mantic actions, separate from the recognizer.

This encourages moving all possible checks that logically
precede the creation of an object into the recognizer—which is
where it really belongs, since no objects should be constructed
(or acted upon) until the incoming data that describes them
is validated.



Performance overhead.
We functionally tested our proxy in the setting of filtering

single DNP3 sessions over TCP. In this context, we found per-
formance overhead of parsing negligible compared to other
I/O costs, and well within the bounds for the targeted ap-
plication: protecting an outstation or a master from a single
outstation (or a small number of outstations).

More rigorous performance testing would be required for
the scenario of filtering all of a master’s traffic, which can
reach over 2000 concurrent sessions. In this scenario, sheer
throughput may matter, and a different platform may be re-
quired to handle it. Similar concerns apply to real-time proto-
cols such as GSSE, which has latency requirements of under
4ms. This work is ongoing.

DNP3 traffic and encryption.
The DNP3-SAv5 proposal introduces selective cryptographic

authentication for a subset of DNP3 function codes. In partic-
ular, SA specifies a set of codes that must always be authenti-
cated, and a subset that can be optionally authenticated. The
rationale for the selective authenticated design was to con-
serve bandwidth, but we believe it also ushers in a dangerous
security anti-pattern. In [6] we discuss the additional attack
surface DNP3-SAv5 adds, and the threat models it overlooks.

5. RECOMMENDATIONS FOR COMMER-
CIAL DEVELOPMENT

The ELFbac model is recommended for the industry devel-
opers who seek to leverage both the existing Linux ecosystem
and the best-of-breed Linux kernel self-protection of Grse-
curity/PaX, while remaining compatible with the standard
C/C++ ABI and its build chain. ELFbac is complementary
to the mandatory access controls (MAC) such as SELinux,
which operate at the granularity level of an entire process,
and can be combined with an ELFbac intra-process policy
without any additional costs.

More specifically, SELinux policies apply to system calls
issued by a process entirely based on the process’ SELinux
identity label, regardless of the order of issue or of the partic-
ular code executing in the process at the time of the system
call. For example, an allowed system call can be issued either
by the main executable or any of its loaded libraries, at any
stage of the process’ timeline; it is all the same to SELinux.10

In short, SELinux and other MAC schemes concern them-
selves neither with the order of system calls, nor with the
order of memory accesses that happen inside a process. For
control processes that naturally contain distinct phases of
operation, this level of control is clearly not expressing the
programmer’s intended operation of the process.

ELFbac is the only policy of its kind that allows the de-
veloper to enforce the intra-process access control between the
structural units of a program at its runtime—such as between
libraries loaded into the process and their sensitive data to
which these libraries are intended to have exclusive access.
Further, ELFbac’s intra-process policies isolate sensitive code
units from accidentally operating on untrusted, un-validated,
potentially maliciously crafted data, and the sensitive data
units from being accessed or operated upon by code units
not intended to do so.

10For this reason, SELinux permission policies are colloquially
described as a “bag of permissions”, per process.

Thus we recommend the ELFbac protections for any front-
end ICS/SCADA systems facing untrusted data. Although
effective use of ELFbac requires that the policy expresses
some knowledge of programmer’s intent w.r.t. the program’s
units—such as the sequence in which these units are expected
to execute and the kinds of data they are supposed to exe-
cute on—these intents are typically easily observable at the
development time and well-understood by the programmers.

An explicit enforcement mechanism for these intents will
both help the programmer catch errors and help commu-
nicate these actual intents to Unix runtime, where they are
currently almost entirely ignored. Thus ELFbac captures in a
few lines per compilation and/or scoping units of a program
what modern programming languages strive to achieve via
new language semantics: enforceability of existing and clear
intent at runtime. However, unlike most programming lan-
guages, ELFbac maintains compatibility with the core C/C++
ABI, binary OS utilities, and the build chain tools.

Leveraging Grsecurity/PaX, a state-of-the-art kernel hard-
ening technology. Grsecurity/PaX is the industry’s leading
kernel hardening technology. Meant for general-purpose sys-
tems, the Grsecurity/PaX patch is considerably more complex
than it needs to be for control systems that do not need, e.g.,
to support just-in-time compilation (JIT) at runtime and can
place other restrictions on the applications as a matter of pol-
icy.

A version of Grsecurity/PaX offering a cohesive subset of its
protective features [1] has been ported by the Grsecurity/PaX
team for the ARM industrial computer platform used in our
project.

We integrated our ELFbac kernel mechanism with it with-
out conflict, thus leveraging the strongest practical kernel
self-protection mitigations in industry into our prototype
hardened stack.

6. RELATED WORK
Our LangSec methodology builds on many insights and

efforts in systems and network security. A comprehensive
survey of these is beyond the scope of this paper. We refer
the reader to [14] for such a survey, and to [9] for recent
research on secure parsing through verification. Wang et
al. [17] and Pike [13] explore a different but closely related
approach based on embedded Domain Specific Languages
(eDSL) for embedded control systems.

Conclusion
We demonstrated that input-checking parsers for complex
ICS protocols such as DNP3 can be written robustly and
succinctly by starting with a critical reading of the proto-
col specification and extracting all structural requirements
on the protocol payloads into a grammar, then by writing the
parsing code to closely follow this grammar. In the process of
such reading and implementation, troublesome ambiguities
of the specification are naturally exposed and fixed.

Our implementation of a DNP3 validation proxy withstood
vigorous fuzz-testing with state-of-the-art tools—which few
commercial implementations survived in prior tests [5]. Moreover,
those few implemented small and restrictive subsets of the DNP3
protocol compared to our implementation.

We demonstrated that ABI-based intra-memory protection
policies do not place a considerable burden on ICS program-
mers, so long as they follow reasonable design practices.



We also demonstrated that our approach composes with the
state-of-the-art Linux kernel hardening technology, Grsecu-
rity/PaX.

Code availability
The code of our DNP3 parser construction kit and the ex-
haustive core syntax validation proxy are available via http:
// langsec.org/dnp3/ and on Github as https://github.com/pesco/
dnp3 and https://github.com/sergeybratus/proxy respectively, un-
der the BSD license. The code of the ELFbac ARM implemen-
tation is available at https://github.com/sergeybratus/elfbac-arm/ ,
with the supporting materials at http://elfbac.org/ .
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